Lecture 12: Game Theory // Nash equilibrium

Mauricio Romero

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Beauty contest

- Consider the following game among 100 people. Each individual selects a number, s_{i}, between 20 and 60 .
- Let a_{-i} be the average of the number selected by the other 99 people. i.e. $a_{-i}=\sum_{j \text { neqi }} \frac{S_{j}}{99}$.
- The utility function of the individual i is

$$
u_{i}\left(s_{i}, s_{-i}\right)=100-\left(s_{i}-\frac{3}{2} a_{-i}\right)^{2}
$$

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others
- That is they would like to choose $s_{i}=\frac{3}{2} a_{-i}$

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others
- That is they would like to choose $s_{i}=\frac{3}{2} a_{-i}$
- but $a_{-i} \in[20,60]$

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others
- That is they would like to choose $s_{i}=\frac{3}{2} a_{-i}$
- but $a_{-i} \in[20,60]$
- Therefore $s_{i}=20$ is dominated by $s_{i}=30$

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a_{-i} \in[30,60]$)

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a_{-i} \in[30,60]$)
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a_{-i} \in[30,60]$)
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., $a_{-i} \in[45,60]$)

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a_{-i} \in[30,60]$)
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., $a_{-i} \in[45,60]$)
- 60 would dominate any other selection and therefore all the players select 60 .

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a_{-i} \in[30,60]$)
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., $a_{-i} \in[45,60]$)
- 60 would dominate any other selection and therefore all the players select 60.
- The solution by means of iterated elimination of dominated strategies is $\underbrace{(60,60, \ldots, 60)}_{100 \text { times }}$

Lecture 12: Game Theory // Nash equilibrium

Dominance
Weakly dominated strategies

Nash equilibrium

Some examples

Relationship to dominance

Examples
Cournot Competition
Cartels

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- There is no strictly dominated strategy

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B
- It's tempting to think player 1 would never play C

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B
- It's tempting to think player 1 would never play C
- However, if player 1 is sure that player two is going to play a he would be completely indifferent between playing B or C

Definition

s_{i} weakly dominates s_{i}^{\prime} if for all opponent pure strategy profiles, $s_{-i} \in S_{-i}$,

$$
u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(i^{\prime}, s_{-i}\right)
$$

and there is at least one opponent strategy profile $s_{-i} \in S_{-i}$ for which

$$
u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right) .
$$

- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- There is a problem, and that is that the order in which we eliminate the strategies matters

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- If we eliminate B (C dominates weakly), then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result (C, a).

	a	b
A	3,4	4,3
B	5,3	3,5
C	5,3	4,3

- If we eliminate B (C dominates weakly), then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result (C, a).
- If on the other hand, we notice that A is also weakly dominated by C then we can eliminate it in the first round, and this would eliminate a in the second round and therefore B would be eliminated. This would result in (C, b).

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Remember the definition of competitive equilibrium in a market economy.

Definition

A competitive equilibrium in a market economy is a vector of prices and baskets x_{i} such that: 1) x_{i} maximizes the utility of each individual given the price vector i.e.

$$
x_{i}=\arg \max _{p \operatorname{cdot} x_{i} \leq p \cdot w_{i}} u\left(x_{i}\right)
$$

$2)$ the markets empty.

$$
\sum_{i} x_{i}=\sum_{i} w_{i}
$$

- 1) means that given the prices, individuals have no incentive to demand a different amount
- 1) means that given the prices, individuals have no incentive to demand a different amount
- The idea is to extend this concept to strategic situations

Best response

We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that maximize her utility given that other individuals follow the strategy profile s_{-i}. Formally,

Best response

We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that maximize her utility given that other individuals follow the strategy profile s_{-i}. Formally,

Definition
Given a strategy profile of opponents s_{-i}, we can define the best response of player i :

$$
B R_{i}\left(s_{-i}\right)=\arg \max _{s_{i}^{\prime} \in S_{i}} u_{i}\left(s_{i}^{\prime}, s_{-i}\right) .
$$

- $s_{i} \in B R_{i}\left(s_{-i}\right)$ if and only if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in S_{i}$

Best response

We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that maximize her utility given that other individuals follow the strategy profile s_{-i}. Formally,

Definition

Given a strategy profile of opponents s_{-i}, we can define the best response of player i :

$$
B R_{i}\left(s_{-i}\right)=\arg \max _{s_{i}^{\prime} \in S_{i}} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

- $s_{i} \in B R_{i}\left(s_{-i}\right)$ if and only if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in S_{i}$
- There could be multiple strategies in $B R_{i}\left(s_{-i}\right)$ but all such strategies give the same utility to player i if the opponents are indeed playing according to s_{-i}

Nash equilibrium

Definition

Suppose that we have a game
$\left(I=\{1,2, \ldots n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every i and for every $s_{i} \in S_{i}$,

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right) .
$$

Nash equilibrium

Definition

Suppose that we have a game
$\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every $i, s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate

Nash equilibrium

Definition

Suppose that we have a game
$\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every $i, s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there

Nash equilibrium

Definition

Suppose that we have a game
$\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every $i, s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there
- This is a concept of stability, but there is no way to ensure, or predict, that the game will reach this equilibrium

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Beauty contest

- Consider the following game among 2 people. Each individual selects a number, s_{i}, between 20 and 60 .

Beauty contest

- Consider the following game among 2 people. Each individual selects a number, s_{i}, between 20 and 60 .
- Let s_{-i} be the number selected by the other individual.

Beauty contest

- Consider the following game among 2 people. Each individual selects a number, s_{i}, between 20 and 60 .
- Let s_{-i} be the number selected by the other individual.
- The utility function of the individual i is

$$
u_{i}\left(s_{i}, s_{-i}\right)=100-\left(s_{i}-\frac{3}{2} s_{-i}\right)^{2}
$$

Beauty contest

The best response of an individual is given by

$$
s_{i}\left(s_{-i}\right)^{*}= \begin{cases}\frac{3}{2} s_{-i} & \text { si } s_{-i} \leq 40 \\ 60 & \text { si } s_{-i}>40\end{cases}
$$

The Nash equilibrium is where both BR functions intersect (i.e., when both play 60)

Prisoner's dilemma

	C	NC
C	5,5	0,10
NC	10,0	2,2

Prisoner's dilemma

	C	NC
C	5,5	0,10
NC	10,0	2,2

The best response functions are:

$$
B R_{i}\left(s_{-i}\right)= \begin{cases}N C & \text { si } s_{i}=C \\ N C & \text { si } s_{i}=N C\end{cases}
$$

The Nash equilibrium is where both BR functions intersect (i.e., when both play NC,NC)

Prisoner's dilemma - A trick

Best response of 1 to 2 playing C

	C	NC
C	5,5	0,10
NC	10,0	2,2

Prisoner's dilemma - A trick

Best response of 1 to 2 playing NC

	C	NC
C	5,5	0,10
NC	$\underline{10,0}$	$\underline{2}, 2$

Prisoner's dilemma - A trick

Best response of 2 to 1 playing C

	C	NC
C	5,5	$0, \underline{10}$
NC	$\underline{10,0}$	$\underline{2}, 2$

Prisoner's dilemma - A trick

Best response of 2 to 1 playing NC

	C	NC
C	5,5	$0, \underline{10}$
NC	$\underline{10}, \mathbf{0}$	$\underline{2}, \underline{2}$

When underlined for both players, it is a Nash equilibrium (both are doing their $B R$)

Battle of the sexes

	G	P
G	2,1	0,0
P	0,0	1,2

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

$$
B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { si } s_{i}=G \\ P & \text { si } s_{i}=P\end{cases}
$$

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

$$
B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { si } s_{i}=G \\ P & \text { si } s_{i}=P\end{cases}
$$

Thus, (G, G) y (P, P) are both Nash equilibrium

Matching pennies (Pares o Nones I)

	1	2
1	$(1000,-1000)$	$(-1000,1000)$
2	$(-1000,1000)$	$(1000,-1000)$

Matching pennies (Pares o Nones I)

	1	2
1	$(1000,-1000)$	$(-1000,1000)$
2	$(-1000,1000)$	$(\underline{1000},-1000)$

Matching pennies (Pares o Nones I)

	1	2
1	$(\mathbf{1 0 0 0},-1000)$	$(-1000,1000)$
2	$(-1000,1000)$	$(1000,-1000)$

$$
\begin{aligned}
& B R_{1}\left(s_{2}\right)= \begin{cases}1 & \text { si } s_{2}=1 \\
2 & \text { si } s_{2}=2\end{cases} \\
& B R_{2}\left(s_{1}\right)= \begin{cases}2 & \text { si } s_{1}=1 \\
1 & \text { si } s_{2}=2\end{cases}
\end{aligned}
$$

There is no Nash equilibrium in pure strategies

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Nash equilibrium survive IDSDS

Theorem
Every Nash equilibrium survives the iterative elimination of strictly dominated strategies

By contradiction:

- Suppose it is not true

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}
$$

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}
$$

- In particular

$$
u_{i}\left(s_{i}^{*}, s_{-i} *\right)<u_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}
$$

- In particular

$$
u_{i}\left(s_{i}^{*}, s_{-i} *\right)<u_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

- But this means s_{i}^{*} is not the best response of individual i to s_{-i}^{*}

Proof

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}
$$

- In particular

$$
u_{i}\left(s_{i}^{*}, s_{-i} *\right)<u_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

- But this means s_{i}^{*} is not the best response of individual i to s_{-i}^{*}
- And this is a contradiction!

Nash equilibrium survive IDSDS

Theorem
If the process of IDSDS comes to a single solution, that solution is
a Nash Equilibrium and is unique.

Proof

First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.

Proof.
By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium

Proof

First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.

Proof.

By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium
- For some individual i there exits s_{i} such that

$$
u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)
$$

Proof

First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.

Proof.

By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium
- For some individual i there exits s_{i} such that

$$
u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)
$$

- But then s_{i} could not have been eliminated

Proof

First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.

Proof.

By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium
- For some individual i there exits s_{i} such that

$$
u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)
$$

- But then s_{i} could not have been eliminated
- And this is a contradiction!

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium
Dominance
Nash equilibrium
Some examples

Relationship to dominance

Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance

Weakly dominated strategies

Nash equilibrium

Some examples

Relationship to dominance

Examples
Cournot Competition
Cartels

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.
- If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse demand function is given by:

$$
P(Q)=120-Q, Q=q_{1}+q_{2} .
$$

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.
- If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse demand function is given by:

$$
P(Q)=120-Q, Q=q_{1}+q_{2}
$$

- Strategy space is $S_{i}=[0,+\infty)$

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.
- If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse demand function is given by:

$$
P(Q)=120-Q, Q=q_{1}+q_{2}
$$

- Strategy space is $S_{i}=[0,+\infty)$
- The utility function of player i is given by:

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\right)=\left(120-\left(q_{1}+q_{2}\right)\right) q_{1} \\
& \pi_{2}\left(q_{1}, q_{2}\right)=\left(120-\left(q_{1}+q_{2}\right)\right) q_{2}
\end{aligned}
$$

Cournot Competition

- Are there any strictly dominant strategies?

Cournot Competition

- Are there any strictly dominant strategies?

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q_{-i},

$$
\frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i}
$$

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q_{-i},

$$
\begin{aligned}
& \frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i} \\
& \frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i}
\end{aligned}
$$

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q_{-i},

$$
\begin{aligned}
& \frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i} \\
& \frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i}
\end{aligned}
$$

- Therefore 60 strictly dominates any $q_{i} \in(60,120]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in[0,+\infty)$ such that $B R_{i}\left(q_{-i}\right)=q_{i}$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in[0,+\infty)$ such that $B R_{i}\left(q_{-i}\right)=q_{i}$
- Such a q_{i} can never be strictly dominated

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in[0,+\infty)$ such that $B R_{i}\left(q_{-i}\right)=q_{i}$
- Such a q_{i} can never be strictly dominated
- After one round of deletion of strictly dominated strategies, we are left with: $S_{i}=[0,60]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- $q_{-i}=[0,60]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- $q_{-i}=[0,60]$
- Therefore $q_{i} \in[0,30)$ are strictly dominated by $q_{i}=30$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- $q_{-i}=[0,60]$
- Therefore $q_{i} \in[0,30)$ are strictly dominated by $q_{i}=30$
- After two rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[30,60]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- $q_{-i}=[30,60]$
- 45 strictly dominates all strategies $q_{i} \in(45,60]$
- After three rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[30,45]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- $q_{-i}=[30,45]$
- 37.5 strictly dominates all strategies $q_{i} \in[37.5,45]$
- After four rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[30,45]$

Cournot Competition

- After (infinitely) many iterations, the only remaining strategies are $S_{i}=40$
- The unique solution by IDSDS is $q_{1}^{*}=q_{2}^{*}=40$.

Cournot Competition

- There will also be a unique Nash equilibrium

Cournot Competition

- There will also be a unique Nash equilibrium

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

Cournot Competition

- There will also be a unique Nash equilibrium

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.

Cournot Competition

- There will also be a unique Nash equilibrium

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.

$$
q_{1}^{*}=\frac{120-q_{2}^{*}}{2}, q_{2}^{*}=\frac{120-q_{1}^{*}}{2}
$$

Cournot Competition

- There will also be a unique Nash equilibrium

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.

$$
q_{1}^{*}=\frac{120-q_{2}^{*}}{2}, q_{2}^{*}=\frac{120-q_{1}^{*}}{2}
$$

- We can solve for q_{1}^{*} and q_{2}^{*} to obtain:

$$
q_{1}^{*}=40, q_{2}^{*}=40, Q^{*}=80, \Pi_{1}^{*}=\Pi_{2}^{*}=1600
$$

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

$$
\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600
$$

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

$$
\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600
$$

- The profits to each firm in the Cournot Competition is less than half of the monopoly profits

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

$$
\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600
$$

- The profits to each firm in the Cournot Competition is less than half of the monopoly profits
- In a duopoly, externalities are imposed on the other firm

Cournot Competition - General case

- n firms are competing a la Cournot

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by:

$$
P\left(q_{1}+q_{2}+\cdots q_{n}\right)
$$

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by:

$$
P\left(q_{1}+q_{2}+\cdots q_{n}\right)
$$

- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by:

$$
P\left(q_{1}+q_{2}+\cdots q_{n}\right)
$$

- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i
- To simplify notation, let $Q_{-i}=\sum_{j \neq i} q_{j}$

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by:

$$
P\left(q_{1}+q_{2}+\cdots q_{n}\right)
$$

- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i
- To simplify notation, let $Q_{-i}=\sum_{j \neq i} q_{j}$

$$
\max _{q_{i}} p\left(q_{i}+Q_{-i}\right) q_{i}-c_{i}\left(q_{i}\right)
$$

Cournot Competition - General case

- First order condition implies:

$$
\begin{array}{rlr}
q_{i} \frac{d P}{d Q}\left(q_{i}+Q_{-i}\right)+P\left(q_{i}+Q_{-i}\right) & = & \frac{d c_{i}}{d q_{i}}\left(q_{i}\right) \\
\frac{P(Q)-\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)}{P(Q)} & =-\frac{q_{i}}{Q} \frac{Q}{P(Q)} \frac{d P}{d Q}(Q)
\end{array}
$$

Cournot Competition - General case

- First order condition implies:

$$
\begin{array}{rlr}
q_{i} \frac{d P}{d Q}\left(q_{i}+Q_{-i}\right)+P\left(q_{i}+Q_{-i}\right) & = & \frac{d c_{i}}{d q_{i}}\left(q_{i}\right) \\
\frac{P(Q)-\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)}{P(Q)} & =-\frac{q_{i}}{Q} \frac{Q}{P(Q)} \frac{d P}{d Q}(Q)
\end{array}
$$

- Therefore in a pure strategy Nash equilibrium $\left(q_{1}^{*}, q_{2}^{*}, \ldots, q_{n}^{*}\right)$ with $Q^{*}=q_{1}^{*}+q_{2}^{*}+\cdots q_{n}^{*}$, we must have:

$$
\begin{gathered}
\frac{P\left(Q^{*}\right)-\frac{d c_{1}}{d q_{1}}\left(q_{1}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{1}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}, \\
\frac{P\left(Q^{*}\right)-\frac{d c_{2}}{d q_{2}}\left(q_{2}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{2}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}, \\
\vdots \\
\frac{P\left(Q^{*}\right)-\frac{d c_{n}}{d q_{n}}\left(q_{n}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{n}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)} .
\end{gathered}
$$

Cournot Competition - General case

- Suppose that all firms have exactly the same cost function c

$$
\begin{gathered}
\frac{P\left(Q^{*}\right)-\frac{d c}{d q_{1}}\left(q_{1}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{1}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}, \\
\frac{P\left(Q^{*}\right)-\frac{d c}{d q_{2}}\left(q_{2}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{2}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}, \\
\vdots \\
\frac{P\left(Q^{*}\right)-\frac{d c}{d q_{n}}\left(q_{n}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{n}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)} .
\end{gathered}
$$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which

$$
q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}
$$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which

$$
q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}
$$

- In this case $Q^{*}=n q^{*}$

$$
\frac{P\left(n q^{*}\right)-\frac{d c}{d q_{1}}\left(q^{*}\right)}{P\left(n q^{*}\right)}=-\frac{1}{n} \frac{1}{\varepsilon_{Q, P}\left(n q^{*}\right)}
$$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which

$$
q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}
$$

- In this case $Q^{*}=n q^{*}$

$$
\frac{P\left(n q^{*}\right)-\frac{d c}{d q_{1}}\left(q^{*}\right)}{P\left(n q^{*}\right)}=-\frac{1}{n} \frac{1}{\varepsilon_{Q, P}\left(n q^{*}\right)}
$$

- Rewriting

$$
P\left(Q^{*}\right)=\frac{1}{1+\frac{1}{n} \frac{1}{\varepsilon_{Q, P\left(Q^{*}\right)}}} \frac{\partial c}{d q}\left(\frac{Q^{*}}{n}\right) .
$$

Lecture 12: Game Theory // Nash equilibrium

Dominance
 Weakly dominated strategies

Nash equilibrium

Some examples

Relationship to dominance

Examples

Cournot Competition
Cartels

Cartels

- Suppose there are three firms who face zero marginal cost
- The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

Cartels

- Suppose there are three firms who face zero marginal cost
- The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

- The first order condition gives

$$
1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}
$$

Cartels

- Suppose there are three firms who face zero marginal cost
- The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

- The first order condition gives

$$
1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}
$$

- In a Nash equilibrium we must have:

$$
\begin{aligned}
q_{1}^{*} & =\frac{1-q_{2}^{*}-q_{3}^{*}}{2} \\
q_{2}^{*} & =\frac{1-q_{1}^{*}-q_{3}^{*}}{2} \\
q_{3}^{*} & =\frac{1-q_{1}^{*}-q_{2}^{*}}{2} .
\end{aligned}
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

$$
q_{1}^{*}=\frac{1}{2}-\frac{q_{2}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{1}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{1}^{*}=\frac{1}{4}
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

$$
q_{1}^{*}=\frac{1}{2}-\frac{q_{2}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{1}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{1}^{*}=\frac{1}{4}
$$

- $q_{1}^{*}=q_{2}^{*}=q_{3}^{*}=\frac{1}{4}$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

$$
q_{1}^{*}=\frac{1}{2}-\frac{q_{2}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{1}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{1}^{*}=\frac{1}{4}
$$

- $q_{1}^{*}=q_{2}^{*}=q_{3}^{*}=\frac{1}{4}$
- Price is $p^{*}=1 / 4$ and all firms get the same profits of $1 / 16$

Cartels

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B

Cartels

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B
- Each firm then again faces the profit maximization problem:

$$
\max _{q_{i}}\left(1-q_{i}-q_{-i}\right) q_{i} \Longrightarrow B R_{i}\left(q_{-i}\right)=\frac{1-q_{-i}}{2}
$$

Cartels

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B
- Each firm then again faces the profit maximization problem:

$$
\max _{q_{i}}\left(1-q_{i}-q_{-i}\right) q_{i} \Longrightarrow B R_{i}\left(q_{-i}\right)=\frac{1-q_{-i}}{2}
$$

- Therefore

$$
\begin{aligned}
q_{A}^{*} & =\frac{1-q_{B}^{*}}{2} \\
q_{B}^{*} & =\frac{1-q_{A}^{*}}{2}
\end{aligned}
$$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3}
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$
- Firms 1 and 2 suffered, while firm 3 is better off!

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$
- Firms 1 and 2 suffered, while firm 3 is better off!
- Firm 3 is obtaining a disproportionate share of the joint profits (more than 1/3)

Cartels

- You might expect that 3 may want to join the cartel as well...

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}
$$

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of $\frac{1}{12}<\frac{1}{9}$

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of $\frac{1}{12}<\frac{1}{9}$
- Firm 3 clearly wants to stay out

Cartels

- This exercise explains the difficulties associated with sustaining collusive agreements (e.g., the OPEC cartel)

