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Bertrand Competition

I N identical firms competing on the same market

I Marginal cost is constant and equal to c

I Aggregate inverse demand is

p = a− b
N∑
j=1

qj

I Benefits of firm j are:

Πj(q1, ...qN) =

(
a− b

N∑
i=1

qi

)
qj − cqj .
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Bertrand Competition

I The FOC for a given firm is:

a− b
N∑
i=1

qi − bqj − c = 0

I The symmetric Nash equilibrium is given by

q∗ =
a− c

b(N + 1)

I Thus

N∑
j=1

qj =
N (a− c)

b(N + 1)

p = a− N
a− c

(N + 1)
< a

Πj =
(a− c)2

b(N + 1)2
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I As N →∞ we get close to perfect competition

I N = 1 we get the monopoly case
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Bertrand Competition

I Consider the alternative model in which firms set prices

I In the monopolist’s problem, there was not distinction
between a quantity-setting model and a price setting

I In oligopolistic models, this distinction is very important



Bertrand Competition

I Consider two firms with the same marginal constant marginal
cost of production and demand is completely inelastic

I Each firm simultaneously chooses a price pi ∈ [0,+∞)

I If p1, p2 are the chosen prices, then the utility functions of
firm i is given by:

ui (pi , p−i ) =


p−i − ε if pi > p−i ,

(pi − c)Q(pi )
2 if pi = p−i ,

(pi − c)Q(pi ) if pi < p−i .



Bertrand Competition

I Assume that the marginal revenue function is strictly
decreasing (MR ′(pi ) < 0):

R(pi ) = piQ(pi ) (1)

MR(pi ) = Q(pi ) + piQ
′(pi ) (2)

= Q(pi ) (1 + εQ,p(pi )) . (3)

I Let pm > c ≥ 0 be the monopoly price such that
MR(pm) = c .

I Then

MR(pi )− c > 0 if pi < pm,MR(pi )− c < 0 if pi > pm.
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Bertrand Competition

I The best response function is:

BRi (p−i ) =


pm if p−i > pm,

p−i − ε if c < p−i ≤ pm,

[c ,+∞) if c = p−i

(c ,+∞) if c > p−i .

I Where ε is the smallest monetary unit



Bertrand Competition

Case 1: p∗1 > pm

I p∗2 = pm

I BR2(pm) = pm − ε

I BR1(pm − ε) = pm − 2ε

I So this cannot be a Nash equilibrium
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Bertrand Competition

Case 4: p∗1 = c

I BR2(p∗1) = (c ,+∞)

I The unique pure strategy Nash equilibrium is p∗1 = p∗2 = c



Bertrand Competition

Case 4: p∗1 = c

I BR2(p∗1) = (c ,+∞)

I The unique pure strategy Nash equilibrium is p∗1 = p∗2 = c



Bertrand Competition

Thus in contrast to the Cournot duopoly model, in the Bertrand
competition model, two firms get us back to perfect competition
(p = c)
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Bertrand Competition - different costs

I Suppose that the marginal cost of firm 1 is equal to c1 and
the marginal cost of firm 2 is equal to c2 where c1 < c2.

I The best response for each firm:

BRi (p−i ) =


pim if p−i > pim,

p−i − ε if ci < p−i ≤ pim,

[ci ,+∞) if p−i = ci

(p−i ,+∞) if p−i < ci .



Bertrand Competition - different costs

I If p∗2 = p∗1 = c1 , then firm 1 would be making a loss

I If p∗2 = p∗1 = c2 , then firm 1 would cut prices to keep the
whole market

I Any pure strategy NE must have p∗2 ≤ c1. Otherwise, if
p∗2 > c1 then firm 1 could undercut p∗2 and get a positive profit

I Firm 1 would really like to price at some price p∗1 just below
the marginal cost of firm 2, but wherever p2 is set, Firm 1
would try to increase prices

I No NE because of continuous prices
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Bertrand Competition - discreet prices

I Suppose c1 = 0 < c2 = 10

I Firms can only set integer prices.

I The demand function is given by:

I Suppose that (p∗1 , p
∗
2) is a pure strategy Nash equilibrium...
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Bertrand Competition - discreet prices

Case 1: p∗1 = 0

I Best response of firm 2 is to choose some p∗2 > p∗1

I p∗1 cannot be a best response to p∗2 since by setting p1 = p∗2
firm 1 would get strictly positive profits
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Bertrand Competition - discreet prices

Case 2: p∗1 ∈ {1, 2, . . . , 9}

I Best response of firm 2 is to set any price p∗2 > p∗1

I If p∗2 > p∗1 + 1, then this cannot be a Nash equilibrium since
then firm 1 would have an incentive to raise the price

I The only equilibrium is (p∗1 , p
∗
1 + 1)
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Bertrand Competition - discreet prices

Case 3:p∗1 = 10

I Best responses of firm 2 is to set any price p∗2 ≥ p∗1

I It cannot be that p∗2 = p∗1 since then firm 1 would rather
deviate to a price of 9 and control the whole market:

1

2
(10) = 5 < 9.

I We must have p∗2 = p∗1 + 1 since otherwise, firm 1 would have
an incentive to raise the price higher

I (p∗1 , p
∗
2) = (10, 11) is a Nash equilibrium
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Bertrand Competition - discreet prices

Case 4: p∗1 = 11

I Best response of firm 2 is to set p∗2 = 11

I Firm 1 would not be best responding since by setting a price
of p1 = 10, it would get strictly positive profits
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I Firm 1 would not be best responding since by setting a price
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Bertrand Competition - discreet prices

Case 5: p∗1 ≥ 12

I Firm 2’s best response is to set either p∗2 = p∗1 − 1 or p∗2 = p∗1

I Firm 1 is not best responding since by lowering the price it
can get the whole market.
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Case 5: p∗1 ≥ 12

I Firm 2’s best response is to set either p∗2 = p∗1 − 1 or p∗2 = p∗1

I Firm 1 is not best responding since by lowering the price it
can get the whole market.
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Bertrand Competition - 3 firms

I Symmetric marginal costs model but with 3 firms

I Best response of firm i is given by:

BR1(p2, p3) =


pm if min{p2, p3} > pm,

min{p2, p3} − ε if c < min{p2, p3} ≤ pm,

[c ,+∞) if c = min{p2, p3},
(min{p2, p3},+∞) if c > min{p2, p3}.

I (c , c , c) is indeed a pure strategy Nash equilibrium as in the
two firm case
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Bertrand Competition - 3 firms

I If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} < c

I If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} > c

I We must have min{p1, p2, p3} = c

I Can there be a pure strategy Nash equilibrium in which just
one firm sets price equal to c?

No since that firm would want
to raise his price a bit and get strictly better profits

I There must be at least two firms that set price equal to
marginal cost

I Set of all pure strategy Nash equilibria are given by:

{(c, c , c+ε) : ε ≥ 0}∪{(c, c+ε, c) : ε ≥ 0}∪{(c+ε, c , c) : ε ≥ 0}.
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Hotelling

I Two firms i = 1, 2 decide to produce heterogeneous products
x1, x2 ∈ [0, 1]

I x1, x2 represents the characteristic of the product

I For example, this could be interpreted as a model in which
there is a “linear city” represented by the interval [0, 1]

I In this interpretation, the firms are each deciding where to
locate on this line

I Consumers are uniformly distributed on the line [0, 1], where
θ ∈ [0, 1] represents the consumers ideal type of product that
he would like to consume

I If the firms i = 1, 2 respectively produce products of
characteristic x1 and x2, then a consumer at θ would consume
whichever product is closest to θ

I The game consists of the two players i = 1, 2, each of whom
chooses a point x1, x2 ∈ [0, 1] simultaneously.
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x − x1
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x2 − x

Firm2

1− x2
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Hotelling

Then the profits that accrue to firm 1 is given by the mass of
consumers that are closest to firm 1:

u1(x1, x2) =


x1+x2

2 if x1 < x2,
1
2 if x1 = x2,

1− x1+x2
2 if x1 > x2.

Similarly,

u2(x1, x2) =


1− x1+x2

2 if x1 < x2,
1
2 if x1 = x2,
x1+x2

2 if x1 > x2.
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Hotelling

Compute the best response functions

I Case 1: Suppose first that x2 > 1/2. Then setting x1 against
x2 yields a payoff of

u1(x1, x2) =


x1+x2

2 if x1 < x2,
1
2 if x1 = x2,

1− x1+x2
2 if x1 > x2.

This utility function has a discontinuity at x1 = x2 and jumps
down to 1/2 at x1 = x2. There will be no best response for
firm 1 (try to set as close to the left the other firm as possible)

I Case 2: Suppose next that x2 < 1/2. Again there will be no
best response for firm 1 (try to set as close to the right the
other firm as possible)

I Case 3: Suppose next that x2 = 1/2. Here there will be a
best response for firm 1 at 1/2
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Hotelling

BR1(x2) =


∅ if x2 > 1/2

1/2 if x2 = 1/2

∅ if x2 < 1/2.

Symmetrically, we have:

BR2(x1) =


∅ if x1 > 1/2

1/2 if x1 = 1/2

∅ if x1 < 1/2.

The unique Nash equilibrium is for each firm to choose
(x1, x2) = (1/2, 1/2). Each firm essentially locates in the same
place



Hotelling

I Hotelling can also be done in a discreet setting

I Hotelling can be applied to a variety of situations (e.g.,
voting)

I But this predicts the opposite of polarization

I With three candidates, predictions are quite different

I All candidates picking 1
2 is no longer a Nash equilibrium

I What are the set of pure strategy equilibria here? (this is a
difficult problem).
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Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do
with your chances of winning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three
options to play

I We would like the concept of Nash equilibrium to reflect this
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Mixed strategies

Definition
A mixed strategy σi is a function σi : Si → [0, 1] such that∑

si∈Si

σi (si ) = 1.

I σi (si ) represents the probability with which player i plays si

I A pure strategy is simply a mixed strategy σi that plays
some strategy ai ∈ Si with probability one

I We will denote the set of all mixed strategies of player i by Σi
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Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way
to define how players evaluate payoffs of mixed strategy
profiles

I

u1(σ1, σ2, . . . , σn) =
∑
s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over
paper and scissors with probability 1

2 (i.e., σ−i = (0, 12 ,
1
2))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −1
1

2
+ 1

1

2
= 0

I If I’m randomizing over rock and scissors (i.e., si = (12 , 0,
1
2))

then

E(Ui (σ, σ−i )) = −1
1

4︸ ︷︷ ︸
rock vs paper

+ −1
1

4︸ ︷︷ ︸
rock vs scissors

+ 1
1

4︸︷︷︸
scissors vs paper

+ 0
1

4︸︷︷︸
scissors vs scissors

= −1

4
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Mixed strategies

Definition
A (possibly mixed) strategy profile (σ∗1, σ

∗
2, . . . , σn)∗ is a Nash

equilibrium if and only if for every i ,

ui (σ
∗
i , σ
∗
−i ) ≥ ui (σi , σ

∗
−i )

for all σi ∈ Σi .



Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let σi , σ
′
i be two mixed strategies of player i . Then σi strictly

dominates σ′i if for all mixed strategies of the opponents, σ−i ,

ui (σi , σ−i ) > ui (σ
′
i , σ−i ).



Mixed strategies

If σi is better than σ′i no matter what pure strategy opponents
play, then σi is also strictly better than σ′i no matter what mixed
strategies opponents play

Theorem
Let σi and σ

′
i be two mixed strategies of player i . Then σi strictly

dominates σ′i if and only if for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).



Proof- Part 1

I Since S−i ⊆ Σ−i , if σi strictly dominates σ′i

I Then for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).
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Proof - Part 2

I To prove the other direction, suppose that for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).

I For any σ−i ,

ui (σi , σ−i ) =
∑
si∈Si

∑
s−i∈S−i

σi (si )σ−i (s−i )ui (si , s−i )

=
∑

s−i∈S−i

σ−i (s−i )
∑
si∈Si

σi (si )ui (si , s−i )

=
∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i )

I So

ui (σi , σ−i ) =
∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i ) >
∑

s−i∈S−i

σ−i (s−i )ui (σ
′
i , s−i ) = ui (σ

′
i , σ−i )
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Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let σi , σ
′
i be two mixed strategies of player i . Then σi strictly

dominates σ′i if for all pure strategies of the opponents, s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).



Battle of the sexes

G P

G 2,1 0,0

P 0,0 1,2
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Battle of the sexes

q

p
O

beta2(p)

betal(q)

1

l
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