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» N identical firms competing on the same market
» Marginal cost is constant and equal to ¢

> Aggregate inverse demand is

> Benefits of firm j are:

N
I_Ij(ql,...qN) = <a— bz qi> ¢ — .
i=1
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a—qui—bqj—C:O
i=1
» The symmetric Nash equilibrium is given by
a—c

b(N +1)

*

q =
» Thus

N(a—c)
b(N +1)

.MZ
e
I

-~
Il
—

a—«cCc
— a-N2TC
po= =Ny =°
(a—c)?

b(N + 1)



Bertrand Competition

. N(a—©¢)

jz_;qj  b(N+1)
p = a—Nﬁ<a
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v = b(N +1)2

> As N — oo we get close to perfect competition
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N N(a—c)

;QJ ~ b(N+1)
p = a—Nﬁ<a
. (a—c)2
v b(N + 1)2

> As N — oo we get close to perfect competition

> N =1 we get the monopoly case
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Bertrand Competition

» Consider the alternative model in which firms set prices

P In the monopolist's problem, there was not distinction
between a quantity-setting model and a price setting

» In oligopolistic models, this distinction is very important



Bertrand Competition

» Consider two firms with the same marginal constant marginal
cost of production and demand is completely inelastic

» Each firm simultaneously chooses a price p; € [0, +00)

» If p1, po are the chosen prices, then the utility functions of
firm /i is given by:

p-i—¢€ if pj > p_i,
(pi — )=~ if pi = p_j,
(pi — c)Q(pi) if pi < p—i-




Bertrand Competition

P> Assume that the marginal revenue function is strictly
decreasing (MR'(p;) < 0):

R(pi) = piQ(pi)
MR(pi) = Q(pi)+ piQ (pi)
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Bertrand Competition

P> Assume that the marginal revenue function is strictly
decreasing (MR'(p;) < 0):

R(pi) = piQ(pi) (1)
MR(pi) = Q(pi)+ piQ'(pi) (2)
= Q(p) (L+eq,p(pi)- (3)

> Let p™ > ¢ > 0 be the monopoly price such that
MR(p™) = c.

» Then

MR(p;) —c > 0if p; < p™, MR(p;) — c < 0 if p; > p™.



Bertrand Competition

» The best response function is:

p" if p—j > p™,

BR/(p_;) = p-i—e ifc<p;<p7,
[Cv +OO) if c= P—i

(c,+o0) ifc>p_i.

> Where ¢ is the smallest monetary unit
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Case 1: p; > p™

> BRy(p™) = p" <

» BRi(p™ —¢)=p" — 2

» So this cannot be a Nash equilibrium
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Bertrand Competition

Case 2: p; € (c,p™]

> BRy(pi) = P — ¢

» BRi(p; —¢€) =pj — 2¢

» So this cannot be a Nash equilibrium
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Case 3: p] <c

» BRx(py) > ¢

> BRi(p;) = p; —¢

» So this cannot be a Nash equilibrium
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Case 4: p] =c

» BRy(py) = (¢, +00)



Bertrand Competition

Case 4: p] =c

> BRy(pf) = (¢, +)

» The unique pure strategy Nash equilibrium is pj = p5 = ¢



Bertrand Competition

Thus in contrast to the Cournot duopoly model, in the Bertrand
competition model, two firms get us back to perfect competition

(p=rc)
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Bertrand Competition - different costs

» Suppose that the marginal cost of firm 1 is equal to ¢; and
the marginal cost of firm 2 is equal to ¢ where ¢; < .

» The best response for each firm:

Pin if p_i > p,,
BR(p_;) = p-i—¢€ if ¢ < p—i < Py
e [ci,+o0)  ifp_i=c

(p—i,+o0) if p_;j < ¢j.
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Bertrand Competition - different costs

» If p5 = pi = c1 , then firm 1 would be making a loss

» If p5 = p = ¢, then firm 1 would cut prices to keep the
whole market

» Any pure strategy NE must have p; < ¢;. Otherwise, if
p5 > c1 then firm 1 could undercut p; and get a positive profit

» Firm 1 would really like to price at some price pj just below
the marginal cost of firm 2, but wherever p; is set, Firm 1
would try to increase prices

» No NE because of continuous prices
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Bertrand Competition - discreet prices

» Suppose c; =0< =10

» Firms can only set integer prices.

» The demand function is given by:

» Suppose that (p7, p3) is a pure strategy Nash equilibrium...
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Bertrand Competition - discreet prices

Case 1: p; =0

> Best response of firm 2 is to choose some p5 > pj

» p] cannot be a best response to p; since by setting p1 = p;
firm 1 would get strictly positive profits
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Bertrand Competition - discreet prices

Case 2: p; € {1,2,...,9}

> Best response of firm 2 is to set any price p5 > pj

» If p; > pi + 1, then this cannot be a Nash equilibrium since
then firm 1 would have an incentive to raise the price

» The only equilibrium is (p7, p; + 1)
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Case 3:p] =10
> Best responses of firm 2 is to set any price p5 > pi

» It cannot be that p5 = pj since then firm 1 would rather
deviate to a price of 9 and control the whole market:

1

» We must have p5 = p; + 1 since otherwise, firm 1 would have
an incentive to raise the price higher



Bertrand Competition - discreet prices
Case 3:p] =10
> Best responses of firm 2 is to set any price p5 > pi

» It cannot be that p5 = pj since then firm 1 would rather
deviate to a price of 9 and control the whole market:

1

» We must have p5 = p; + 1 since otherwise, firm 1 would have
an incentive to raise the price higher

» (pi,p3) = (10,11) is a Nash equilibrium
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Case 4: p; =11

> Best response of firm 2 is to set p5 = 11



Bertrand Competition - discreet prices

Case 4: p; =11

> Best response of firm 2 is to set p5 = 11

> Firm 1 would not be best responding since by setting a price
of py = 10, it would get strictly positive profits



Bertrand Competition - discreet prices

Case 5: p; > 12

» Firm 2's best response is to set either p5 = p; — 1 or p5 = pj



Bertrand Competition - discreet prices

Case 5: p; > 12

» Firm 2's best response is to set either p5 = p; — 1 or p5 = pj

> Firm 1 is not best responding since by lowering the price it
can get the whole market.
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» Symmetric marginal costs model but with 3 firms

» Best response of firm i is given by:

m

P if min{p2, p3} > p",
min{py, p3} — ¢ if ¢ < min{py, p3} < p",
[c,+00) if ¢ = min{p2, p3},
(min{p2, p3},+00) if ¢ > min{pz, p3}.

BR1(p2, p3) =



Bertrand Competition - 3 firms

» Symmetric marginal costs model but with 3 firms

» Best response of firm i is given by:

m

P if min{p2, p3} > p",
min{ pz, —€ if ¢ < min{po, <pm,
BRy(ps, p3) {p2, ps} | in{p2,p3} < p
[c,+00) if ¢ = min{p2, p3},
(min{p2, p3},+00) if ¢ > min{pz, p3}.

» (c,c,c) is indeed a pure strategy Nash equilibrium as in the
two firm case
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never be the case that min{p1, p2, p3} < ¢
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>

>

If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} < ¢

If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} > ¢

» We must have min{p1, p2, p3} = ¢

» Can there be a pure strategy Nash equilibrium in which just

one firm sets price equal to ¢? No since that firm would want
to raise his price a bit and get strictly better profits

There must be at least two firms that set price equal to
marginal cost



Bertrand Competition - 3 firms

>

>

If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} < ¢

If (p1, p2, p3) was a pure strategy Nash equilibrium, it can
never be the case that min{p1, p2, p3} > ¢

» We must have min{p1, p2, p3} = ¢

» Can there be a pure strategy Nash equilibrium in which just

one firm sets price equal to ¢? No since that firm would want
to raise his price a bit and get strictly better profits

There must be at least two firms that set price equal to
marginal cost

Set of all pure strategy Nash equilibria are given by:

{(¢,c,c+e€) : e > 0}U{(c,c+e,¢c) : € > 0}U{(c+e,c,c) : e > 0}.
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whichever product is closest to 6



Hotelling

>

Two firms i = 1,2 decide to produce heterogeneous products
x1,x2 € [0,1]

X1, Xp represents the characteristic of the product

For example, this could be interpreted as a model in which
there is a “linear city” represented by the interval [0, 1]

In this interpretation, the firms are each deciding where to
locate on this line

Consumers are uniformly distributed on the line [0, 1], where
0 € [0, 1] represents the consumers ideal type of product that
he would like to consume

If the firms / = 1, 2 respectively produce products of
characteristic x; and x», then a consumer at 8 would consume
whichever product is closest to 6

The game consists of the two players i = 1,2, each of whom
chooses a point x1, x> € [0,1] simultaneously.



Hotelling

X1

X — X1

Xo — X

1—X2

Firml

o+

Firm?2

1



Hotelling

Then the profits that accrue to firm 1 is given by the mass of
consumers that are closest to firm 1:

% if x1 < xo,
u(x1, %) =< 3 if x1 = x,
1-— % if x; > xo.
Similarly,
1-— % if x1 < xo,
up(x1,x2) = % if x1 = X,
% if X1 > X2.
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Compute the best response functions

» Case 1: Suppose first that x > 1/2. Then setting x; against
xo yields a payoff of

L;XQ if x3 < xo,

_J1 -
ui(x1, %) = 4 5 if X1 = xo,
1— 382 if xq > x.

This utility function has a discontinuity at x; = x> and jumps
down to 1/2 at x; = xp. There will be no best response for
firm 1 (try to set as close to the left the other firm as possible)
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Hotelling

Compute the best response functions

» Case 1: Suppose first that x > 1/2. Then setting x; against
xo yields a payoff of

L;XQ if x3 < xo,

_J1 -
ui(x1, %) = 4 5 if X1 = xo,
1— 382 if xq > x.

This utility function has a discontinuity at x; = x> and jumps
down to 1/2 at x; = xp. There will be no best response for
firm 1 (try to set as close to the left the other firm as possible)

» Case 2: Suppose next that x, < 1/2. Again there will be no
best response for firm 1 (try to set as close to the right the
other firm as possible)

» Case 3: Suppose next that x; = 1/2. Here there will be a
best response for firm 1 at 1/2



Hotelling

0 ifx>1/2
BRi(x2) =9 1/2 ifxp=1/2
1) if xp <1/2.
Symmetrically, we have:
0 if x1 > 1/2
BRg(Xl) = 1/2 if X1 = 1/2
0 ifx <1/2.

The unique Nash equilibrium is for each firm to choose
(x1,x2) = (1/2,1/2). Each firm essentially locates in the same
place



Hotelling

» Hotelling can also be done in a discreet setting

» Hotelling can be applied to a variety of situations (e.g.,
voting)

» But this predicts the opposite of polarization
> With three candidates, predictions are quite different
» All candidates picking % is no longer a Nash equilibrium

» What are the set of pure strategy equilibria here? (this is a
difficult problem).
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Consider rock/paper/scissors

Rock | Paper | Scissors
Rock 0,0 -1,1 1-1
Paper 1,-1 0,0 -1,1

Scissors | -1,1 1-1 0,0

» This game is entirely stochastic (ability has nothing to do
with your chances of winning)
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Mixed strategies

Consider rock/paper/scissors

Rock | Paper | Scissors
Rock 0,0 -1,1 1-1
Paper 1,-1 0,0 -1,1

Scissors | -1,1 1-1 0,0

» This game is entirely stochastic (ability has nothing to do
with your chances of winning)

» The probability of winning with every strategy is the same

» Thus, people tend choose randomly which of the three
options to play

» We would like the concept of Nash equilibrium to reflect this



Mixed strategies

Definition
A mixed strategy o; is a function o; : S; — [0, 1] such that

Z U,‘(S,‘) =1.

S;ES;

» o;(s;) represents the probability with which player i plays s;
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> A pure strategy is simply a mixed strategy o; that plays
some strategy a; € S; with probability one



Mixed strategies

Definition
A mixed strategy o; is a function o; : S; — [0, 1] such that

Z U,‘(S,‘) =1.
S;ES;
» o;(s;) represents the probability with which player i plays s;

> A pure strategy is simply a mixed strategy o; that plays
some strategy a; € S; with probability one

» We will denote the set of all mixed strategies of player i by ¥;
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» Given a mixed strategy profile (o1,02,...,0,), we need a way
to define how players evaluate payoffs of mixed strategy
profiles
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Mixed strategies

» Given a mixed strategy profile (o1,02,...,0,), we need a way
to define how players evaluate payoffs of mixed strategy
profiles

u(o1,00,...,00) = Z ui(s1, 82, .., Sn)o1(s1)o2(s2) - - on(sn).
seS
» For instance, assume my opponent is playing randomizing over
paper and scissors with probability 1 (i.e., o_; = (0, 3, 3))
» The expected utility of playing “rock” is
1 1

E(Ui(rock,0-i)) = —15 +15 =0
> If I'm randomizing over rock and scissors (i.e., s; = (3,0, 1))
then
E(Ui(o,0-)) = 71% + —1% + 1% + 0% = —%
—— —~— ~

rock vs paper rock vs scissors scissors vs paper scissors vs scissors



Mixed strategies

Definition
A (possibly mixed) strategy profile (o5, 0%,...,05n)* is a Nash
equilibrium if and only if for every i,

ui(of,0*;) > ui(o;,0*;)

for all o; € X;.



Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let o, 0} be two mixed strategies of player i. Then o; strictly
dominates o7, if for all mixed strategies of the opponents, o_;,

u;(a,-, U_,') > u;(a,{, CT_,').



Mixed strategies

If o; is better than o} no matter what pure strategy opponents
play, then o; is also strictly better than o} no matter what mixed
strategies opponents play

Theorem
Let oj and o’ be two mixed strategies of player i. Then o; strictly
dominates o' if and only if for all s_; € S_j,

U,‘(J,’, S_,') > U,'(O'§7 S_,').
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Proof- Part 1

» Since S_; C ¥ _;, if o; strictly dominates o/

» Then for all s_; € S_;,

ui(oi, s—i) > ui(oi,s—i).



Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,

u,-(cr,-, S_,') > u,-(af, S_,').



Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,

u,-(cr,-, S_,') > u,-(af, S_,').

» For any o_j,

ui(oi, o) = Z Z ai(si)o—i(s-i)ui(si, s-i)

Si€S;s_i€S_;
= Z a_i(s-i) Z oi(si)ui(si, s-i)
s_jES_; S;iES;

> oi(s)ui(on,s-i)

s_;€S_;



Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,

u,-(a,-, S_,') > u,-(af, S_,').

» For any o_j,
Ui(Uthi): Z Z Ui(Si)Ufi(Sfi)Ui(ShS—f)
S;€S;s_;€S_;
= Z 07,'(57,')ZUi(Si)Ui(Si,Sfi)
s_jES_; S;iES;
= > oi(s)ui(on,s-i)
s_;€S_;
> So

uiloi o)) = > o_ils_ulei,s_i) > > o_ils—ui(o],s_;) = ui(o],

s_jES_; s_jES_;

o_j)



Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let o, 0} be two mixed strategies of player i. Then o; strictly
dominates o, if for all pure strategies of the opponents, s_; € S_;,

u,-(a;, S_,') > u;(a,{, S_,').



Battle of the sexes

()

2,1

0,0

0,0

1,2




Battle of the sexes

()




Battle of the sexes




	Examples - Continued
	Mixed strategies

