# Lecture 12: Game Theory // Nash equilibrium 

Mauricio Romero

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued

Mixed strategies

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued

## Mixed strategies

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued<br>Cournot - Revisited<br>Bertrand Competition<br>Bertrand Competition - Different costs<br>Bertrand Competition - 3 Firms Hotelling and Voting Models

Mixed strategies

## Bertrand Competition

- $N$ identical firms competing on the same market


## Bertrand Competition

- $N$ identical firms competing on the same market
- Marginal cost is constant and equal to $c$


## Bertrand Competition

- $N$ identical firms competing on the same market
- Marginal cost is constant and equal to $c$
- Aggregate inverse demand is

$$
p=a-b \sum_{j=1}^{N} q^{j}
$$

## Bertrand Competition

- $N$ identical firms competing on the same market
- Marginal cost is constant and equal to $c$
- Aggregate inverse demand is

$$
p=a-b \sum_{j=1}^{N} q^{j}
$$

- Benefits of firm $j$ are:

$$
\Pi^{j}\left(q^{1}, \ldots q^{N}\right)=\left(a-b \sum_{i=1}^{N} q^{i}\right) q^{j}-c q^{j}
$$

## Bertrand Competition

- The FOC for a given firm is:

$$
a-b \sum_{i=1}^{N} q^{i}-b q_{j}-c=0
$$

## Bertrand Competition

- The FOC for a given firm is:

$$
a-b \sum_{i=1}^{N} q^{i}-b q_{j}-c=0
$$

- The symmetric Nash equilibrium is given by

$$
q^{*}=\frac{a-c}{b(N+1)}
$$

## Bertrand Competition

- The FOC for a given firm is:

$$
a-b \sum_{i=1}^{N} q^{i}-b q_{j}-c=0
$$

- The symmetric Nash equilibrium is given by

$$
q^{*}=\frac{a-c}{b(N+1)}
$$

- Thus

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

## Bertrand Competition

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

- As $N \rightarrow \infty$ we get close to perfect competition


## Bertrand Competition

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

- As $N \rightarrow \infty$ we get close to perfect competition
- $N=1$ we get the monopoly case

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued<br>Cournot - Revisited<br>Bertrand Competition<br>Bertrand Competition - Different costs<br>Bertrand Competition - 3 Firms Hotelling and Voting Models

Mixed strategies

## Bertrand Competition

- Consider the alternative model in which firms set prices
- In the monopolist's problem, there was not distinction between a quantity-setting model and a price setting
- In oligopolistic models, this distinction is very important


## Bertrand Competition

- Consider two firms with the same marginal constant marginal cost of production and demand is completely inelastic
- Each firm simultaneously chooses a price $p_{i} \in[0,+\infty)$
- If $p_{1}, p_{2}$ are the chosen prices, then the utility functions of firm $i$ is given by:

$$
u_{i}\left(p_{i}, p_{-i}\right)= \begin{cases}p_{-i}-\varepsilon & \text { if } p_{i}>p_{-i} \\ \left(p_{i}-c\right) \frac{Q\left(p_{i}\right)}{2} & \text { if } p_{i}=p_{-i} \\ \left(p_{i}-c\right) Q\left(p_{i}\right) & \text { if } p_{i}<p_{-i}\end{cases}
$$

## Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing ( $\left.M R^{\prime}\left(p_{i}\right)<0\right)$ :

$$
\begin{align*}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right)  \tag{1}\\
\operatorname{MR}\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right)  \tag{2}\\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right) \tag{3}
\end{align*}
$$

## Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing ( $\left.M R^{\prime}\left(p_{i}\right)<0\right)$ :

$$
\begin{align*}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right)  \tag{1}\\
\operatorname{MR}\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right)  \tag{2}\\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right) \tag{3}
\end{align*}
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.


## Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing ( $\left.M R^{\prime}\left(p_{i}\right)<0\right)$ :

$$
\begin{align*}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right)  \tag{1}\\
\operatorname{MR}\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right)  \tag{2}\\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right) \tag{3}
\end{align*}
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.
- Then

$$
M R\left(p_{i}\right)-c>0 \text { if } p_{i}<p^{m}, M R\left(p_{i}\right)-c<0 \text { if } p_{i}>p^{m}
$$

## Bertrand Competition

- The best response function is:

$$
B R_{i}\left(p_{-i}\right)= \begin{cases}p^{m} & \text { if } p_{-i}>p^{m} \\ p_{-i}-\varepsilon & \text { if } c<p_{-i} \leq p^{m} \\ {[c,+\infty)} & \text { if } c=p_{-i} \\ (c,+\infty) & \text { if } c>p_{-i} .\end{cases}
$$

- Where $\varepsilon$ is the smallest monetary unit


## Bertrand Competition

Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$


## Bertrand Competition

Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$


## Bertrand Competition

Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$


## Bertrand Competition

Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$
- So this cannot be a Nash equilibrium


## Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$


## Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2 \varepsilon$


## Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2 \varepsilon$
- So this cannot be a Nash equilibrium


## Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right)>c$


## Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right)>c$
- $B R_{1}\left(p_{2}^{*}\right)=p_{2}^{*}-\varepsilon$


## Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right)>c$
- $B R_{1}\left(p_{2}^{*}\right)=p_{2}^{*}-\varepsilon$
- So this cannot be a Nash equilibrium


## Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$


## Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$
- The unique pure strategy Nash equilibrium is $p_{1}^{*}=p_{2}^{*}=c$


## Bertrand Competition

Thus in contrast to the Cournot duopoly model, in the Bertrand competition model, two firms get us back to perfect competition ( $p=c$ )

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued

Cournot - Revisited
Bertrand Competition
Bertrand Competition - Different costs
Bertrand Competition - 3 Firms Hotelling and Voting Models

Mixed strategies

## Bertrand Competition - different costs

- Suppose that the marginal cost of firm 1 is equal to $c_{1}$ and the marginal cost of firm 2 is equal to $c_{2}$ where $c_{1}<c_{2}$.
- The best response for each firm:

$$
B R_{i}\left(p_{-i}\right)= \begin{cases}p_{m}^{i} & \text { if } p_{-i}>p_{m}^{i} \\ p_{-i}-\varepsilon & \text { if } c_{i}<p_{-i} \leq p_{m}^{i} \\ {\left[c_{i},+\infty\right)} & \text { if } p_{-i}=c_{i} \\ \left(p_{-i},+\infty\right) & \text { if } p_{-i}<c_{i}\end{cases}
$$

## Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 1 would be making a loss


## Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 1 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market


## Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 1 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market
- Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut $p_{2}^{*}$ and get a positive profit


## Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 1 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market
- Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut $p_{2}^{*}$ and get a positive profit
- Firm 1 would really like to price at some price $p_{1}^{*}$ just below the marginal cost of firm 2, but wherever $p_{2}$ is set, Firm 1 would try to increase prices


## Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 1 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market
- Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut $p_{2}^{*}$ and get a positive profit
- Firm 1 would really like to price at some price $p_{1}^{*}$ just below the marginal cost of firm 2, but wherever $p_{2}$ is set, Firm 1 would try to increase prices
- No NE because of continuous prices


## Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$


## Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.


## Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.
- The demand function is given by:


## Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.
- The demand function is given by:
- Suppose that $\left(p_{1}^{*}, p_{2}^{*}\right)$ is a pure strategy Nash equilibrium...


## Bertrand Competition - discreet prices

Case 1: $p_{1}^{*}=0$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$


## Bertrand Competition - discreet prices

Case 1: $p_{1}^{*}=0$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$
- $p_{1}^{*}$ cannot be a best response to $p_{2}^{*}$ since by setting $p_{1}=p_{2}^{*}$ firm 1 would get strictly positive profits


## Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$


## Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$
- If $p_{2}^{*}>p_{1}^{*}+1$, then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price


## Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$
- If $p_{2}^{*}>p_{1}^{*}+1$, then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price
- The only equilibrium is $\left(p_{1}^{*}, p_{1}^{*}+1\right)$


## Bertrand Competition - discreet prices

Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$


## Bertrand Competition - discreet prices

Case $3: p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9 and control the whole market:

$$
\frac{1}{2}(10)=5<9 .
$$

## Bertrand Competition - discreet prices

Case $3: p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9 and control the whole market:

$$
\frac{1}{2}(10)=5<9 .
$$

- We must have $p_{2}^{*}=p_{1}^{*}+1$ since otherwise, firm 1 would have an incentive to raise the price higher


## Bertrand Competition - discreet prices

Case $3: p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9 and control the whole market:

$$
\frac{1}{2}(10)=5<9 .
$$

- We must have $p_{2}^{*}=p_{1}^{*}+1$ since otherwise, firm 1 would have an incentive to raise the price higher
- $\left(p_{1}^{*}, p_{2}^{*}\right)=(10,11)$ is a Nash equilibrium


## Bertrand Competition - discreet prices

Case 4: $p_{1}^{*}=11$

- Best response of firm 2 is to set $p_{2}^{*}=11$


## Bertrand Competition - discreet prices

Case 4: $p_{1}^{*}=11$

- Best response of firm 2 is to set $p_{2}^{*}=11$
- Firm 1 would not be best responding since by setting a price of $p_{1}=10$, it would get strictly positive profits


## Bertrand Competition - discreet prices

Case 5: $p_{1}^{*} \geq 12$

- Firm 2's best response is to set either $p_{2}^{*}=p_{1}^{*}-1$ or $p_{2}^{*}=p_{1}^{*}$


## Bertrand Competition - discreet prices

Case 5: $p_{1}^{*} \geq 12$

- Firm 2's best response is to set either $p_{2}^{*}=p_{1}^{*}-1$ or $p_{2}^{*}=p_{1}^{*}$
- Firm 1 is not best responding since by lowering the price it can get the whole market.

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued

Cournot - Revisited
Bertrand Competition
Bertrand Competition - Different costs
Bertrand Competition - 3 Firms
Hotelling and Voting Models

Mixed strategies

## Bertrand Competition-3 firms

- Symmetric marginal costs model but with 3 firms


## Bertrand Competition-3 firms

- Symmetric marginal costs model but with 3 firms
- Best response of firm $i$ is given by:

$$
B R_{1}\left(p_{2}, p_{3}\right)= \begin{cases}p^{m} & \text { if } \min \left\{p_{2}, p_{3}\right\}>p^{m} \\ \min \left\{p_{2}, p_{3}\right\}-\varepsilon & \text { if } c<\min \left\{p_{2}, p_{3}\right\} \leq p^{m}, \\ {[c,+\infty)} & \text { if } c=\min \left\{p_{2}, p_{3}\right\} \\ \left(\min \left\{p_{2}, p_{3}\right\},+\infty\right) & \text { if } c>\min \left\{p_{2}, p_{3}\right\} .\end{cases}
$$

## Bertrand Competition-3 firms

- Symmetric marginal costs model but with 3 firms
- Best response of firm $i$ is given by:

$$
B R_{1}\left(p_{2}, p_{3}\right)= \begin{cases}p^{m} & \text { if } \min \left\{p_{2}, p_{3}\right\}>p^{m} \\ \min \left\{p_{2}, p_{3}\right\}-\varepsilon & \text { if } c<\min \left\{p_{2}, p_{3}\right\} \leq p^{m}, \\ {[c,+\infty)} & \text { if } c=\min \left\{p_{2}, p_{3}\right\} \\ \left(\min \left\{p_{2}, p_{3}\right\},+\infty\right) & \text { if } c>\min \left\{p_{2}, p_{3}\right\} .\end{cases}
$$

- $(c, c, c)$ is indeed a pure strategy Nash equilibrium as in the two firm case


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to $c$ ?


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to $c$ ?


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to $c$ ? No since that firm would want to raise his price a bit and get strictly better profits
- There must be at least two firms that set price equal to marginal cost


## Bertrand Competition-3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to $c$ ? No since that firm would want to raise his price a bit and get strictly better profits
- There must be at least two firms that set price equal to marginal cost
- Set of all pure strategy Nash equilibria are given by:
$\{(c, c, c+\varepsilon): \varepsilon \geq 0\} \cup\{(c, c+\varepsilon, c): \varepsilon \geq 0\} \cup\{(c+\varepsilon, c, c): \varepsilon \geq 0\}$.

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued<br>Cournot - Revisited<br>Bertrand Competition<br>Bertrand Competition - Different costs<br>Bertrand Competition - 3 Firms<br>Hotelling and Voting Models

Mixed strategies

## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products
$x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume
- If the firms $i=1,2$ respectively produce products of characteristic $x_{1}$ and $x_{2}$, then a consumer at $\theta$ would consume whichever product is closest to $\theta$


## Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- $x_{1}, x_{2}$ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume
- If the firms $i=1,2$ respectively produce products of characteristic $x_{1}$ and $x_{2}$, then a consumer at $\theta$ would consume whichever product is closest to $\theta$
- The game consists of the two players $i=1,2$, each of whom chooses a point $x_{1}, x_{2} \in[0,1]$ simultaneously.


## Hotelling



## Hotelling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1 :

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Similarly,

$$
u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ \frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

## Hotelling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1 :

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Similarly,

$$
u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ \frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

## Hotelling

Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting $x_{1}$ against $x_{2}$ yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

## Hotelling

Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting $x_{1}$ against $x_{2}$ yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)


## Hotelling

Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting $x_{1}$ against $x_{2}$ yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)
- Case 3: Suppose next that $x_{2}=1 / 2$. Here there will be a best response for firm 1 at $1 / 2$


## Hotelling

$$
B R_{1}\left(x_{2}\right)= \begin{cases}\emptyset & \text { if } x_{2}>1 / 2 \\ 1 / 2 & \text { if } x_{2}=1 / 2 \\ \emptyset & \text { if } x_{2}<1 / 2\end{cases}
$$

Symmetrically, we have:

$$
B R_{2}\left(x_{1}\right)= \begin{cases}\emptyset & \text { if } x_{1}>1 / 2 \\ 1 / 2 & \text { if } x_{1}=1 / 2 \\ \emptyset & \text { if } x_{1}<1 / 2\end{cases}
$$

The unique Nash equilibrium is for each firm to choose $\left(x_{1}, x_{2}\right)=(1 / 2,1 / 2)$. Each firm essentially locates in the same place

## Hotelling

- Hotelling can also be done in a discreet setting
- Hotelling can be applied to a variety of situations (e.g., voting)
- But this predicts the opposite of polarization
- With three candidates, predictions are quite different
- All candidates picking $\frac{1}{2}$ is no longer a Nash equilibrium
- What are the set of pure strategy equilibria here? (this is a difficult problem).

Lecture 12: Game Theory // Nash equilibrium

Examples - Continued

Mixed strategies

Lecture 12: Game Theory // Nash equilibrium

## Examples - Continued

Mixed strategies

## Mixed strategies

Consider rock/paper/scissors

|  | Rock | Paper | Scissors |
| :---: | :---: | :---: | :---: |
| Rock | 0,0 | $-1,1$ | $1,-1$ |
| Paper | $1,-1$ | 0,0 | $-1,1$ |
| Scissors | $-1,1$ | $1,-1$ | 0,0 |

- This game is entirely stochastic (ability has nothing to do with your chances of winning)


## Mixed strategies

Consider rock/paper/scissors

|  | Rock | Paper | Scissors |
| :---: | :---: | :---: | :---: |
| Rock | 0,0 | $-1,1$ | $1,-1$ |
| Paper | $1,-1$ | 0,0 | $-1,1$ |
| Scissors | $-1,1$ | $1,-1$ | 0,0 |

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same


## Mixed strategies

Consider rock/paper/scissors

|  | Rock | Paper | Scissors |
| :---: | :---: | :---: | :---: |
| Rock | 0,0 | $-1,1$ | $1,-1$ |
| Paper | $1,-1$ | 0,0 | $-1,1$ |
| Scissors | $-1,1$ | $1,-1$ | 0,0 |

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play


## Mixed strategies

Consider rock/paper/scissors

|  | Rock | Paper | Scissors |
| :---: | :---: | :---: | :---: |
| Rock | 0,0 | $-1,1$ | $1,-1$ |
| Paper | $1,-1$ | 0,0 | $-1,1$ |
| Scissors | $-1,1$ | $1,-1$ | 0,0 |

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play
- We would like the concept of Nash equilibrium to reflect this


## Mixed strategies

Definition
A mixed strategy $\sigma_{i}$ is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player $i$ plays $s_{i}$


## Mixed strategies

## Definition

A mixed strategy $\sigma_{i}$ is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player $i$ plays $s_{i}$
- A pure strategy is simply a mixed strategy $\sigma_{i}$ that plays some strategy $a_{i} \in S_{i}$ with probability one


## Mixed strategies

## Definition

A mixed strategy $\sigma_{i}$ is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player $i$ plays $s_{i}$
- A pure strategy is simply a mixed strategy $\sigma_{i}$ that plays some strategy $a_{i} \in S_{i}$ with probability one
- We will denote the set of all mixed strategies of player $i$ by $\Sigma_{i}$


## Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles


## Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

## Mixed strategies

- Given a mixed strategy profile ( $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ ), we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$


## Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- The expected utility of playing "rock" is

$$
E\left(U_{i}\left(\text { rock }, \sigma_{-i}\right)\right)=-1 \frac{1}{2}+1 \frac{1}{2}=0
$$

## Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- The expected utility of playing "rock" is

$$
E\left(U_{i}\left(\text { rock }, \sigma_{-i}\right)\right)=-1 \frac{1}{2}+1 \frac{1}{2}=0
$$

- If I'm randomizing over rock and scissors (i.e., $\left.s_{i}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)$ then
$E\left(U_{i}\left(\sigma, \sigma_{-i}\right)\right)=\underbrace{-1 \frac{1}{4}}_{\text {rock vs paper }}+\underbrace{-1 \frac{1}{4}}_{\text {rock vs scissors }}+\underbrace{1 \frac{1}{4}}_{\text {scissors vs paper }}+\underbrace{0 \frac{1}{4}}_{\text {scissors vs scissors }}=-\frac{1}{4}$


## Mixed strategies

## Definition

A (possibly mixed) strategy profile $\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}\right)^{*}$ is a Nash equilibrium if and only if for every $i$,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)
$$

for all $\sigma_{i} \in \Sigma_{i}$.

## Mixed strategies

## Definition (Mixed Strategy Dominance Definition A)

Let $\sigma_{i}, \sigma_{i}^{\prime}$ be two mixed strategies of player $i$. Then $\sigma_{i}$ strictly dominates $\sigma_{i}^{\prime}$ if for all mixed strategies of the opponents, $\sigma_{-i}$,

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

## Mixed strategies

If $\sigma_{i}$ is better than $\sigma_{i}^{\prime}$ no matter what pure strategy opponents play, then $\sigma_{i}$ is also strictly better than $\sigma_{i}^{\prime}$ no matter what mixed strategies opponents play

## Theorem

Let $\sigma_{i}$ and $\sigma_{i}^{\prime}$ be two mixed strategies of player i. Then $\sigma_{i}$ strictly dominates $\sigma_{i}^{\prime}$ if and only if for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

## Proof- Part 1

- Since $S_{-i} \subseteq \Sigma_{-i}$, if $\sigma_{i}$ strictly dominates $\sigma_{i}^{\prime}$


## Proof- Part 1

- Since $S_{-i} \subseteq \Sigma_{-i}$, if $\sigma_{i}$ strictly dominates $\sigma_{i}^{\prime}$
- Then for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

## Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

## Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right) .
$$

- For any $\sigma_{-i}$,

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{-i}\right) & = \\
& =\sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} \sigma_{i}\left(s_{i}\right) \sigma_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& \sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)
\end{aligned}
$$

## Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right) .
$$

- For any $\sigma_{-i}$,

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{-i}\right) & =\quad \sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} \sigma_{i}\left(s_{i}\right) \sigma_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\quad \sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)
\end{aligned}
$$

- So

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)>\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)=u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

## Mixed strategies

## Definition (Mixed Strategy Dominance Definition B)

Let $\sigma_{i}, \sigma_{i}^{\prime}$ be two mixed strategies of player $i$. Then $\sigma_{i}$ strictly dominates $\sigma_{i}^{\prime}$ if for all pure strategies of the opponents, $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

## Battle of the sexes

|  | $G$ | $P$ |
| :---: | :---: | :---: |
| $G$ | 2,1 | 0,0 |
| $P$ | 0,0 | 1,2 |

## Battle of the sexes

|  | $G$ | $P$ |
| :---: | :---: | :---: |
| $G$ | $\underline{2}, \underline{1}$ | 0,0 |
| $P$ | 0,0 | $\underline{1}, \underline{2}$ |

## Battle of the sexes



