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Mixed strategies

Consider rock/paper/scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

I This game is entirely stochastic (ability has nothing to do
with your chances of winning)

I The probability of winning with every strategy is the same

I Thus, people tend choose randomly which of the three
options to play

I We would like the concept of Nash equilibrium to reflect this
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Mixed strategies

Definition
A mixed strategy σi is a function σi : Si → [0, 1] such that∑

si∈Si

σi (si ) = 1.

I σi (si ) represents the probability with which player i plays si

I A pure strategy is simply a mixed strategy σi that plays
some strategy ai ∈ Si with probability one

I We will denote the set of all mixed strategies of player i by Σi
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Mixed strategies

I Given a mixed strategy profile (σ1, σ2, . . . , σn), we need a way
to define how players evaluate payoffs of mixed strategy
profiles

I

u1(σ1, σ2, . . . , σn) =
∑
s∈S

u1(s1, s2, . . . , sn)σ1(s1)σ2(s2) · · ·σn(sn).

I For instance, assume my opponent is playing randomizing over
paper and scissors with probability 1

2 (i.e., σ−i = (0, 12 ,
1
2))

I The expected utility of playing “rock” is

E (Ui (rock, σ−i )) = −1
1

2
+ 1

1

2
= 0

I If I’m randomizing over rock and scissors (i.e., si = (12 , 0,
1
2))

then

E(Ui (σ, σ−i )) = −1
1

4︸ ︷︷ ︸
rock vs paper

+ −1
1

4︸ ︷︷ ︸
rock vs scissors

+ 1
1

4︸︷︷︸
scissors vs paper

+ 0
1

4︸︷︷︸
scissors vs scissors

= −1

4
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Mixed strategies

Definition
A (possibly mixed) strategy profile (σ∗1, σ

∗
2, . . . , σn)∗ is a Nash

equilibrium if and only if for every i ,

ui (σ
∗
i , σ
∗
−i ) ≥ ui (σi , σ

∗
−i )

for all σi ∈ Σi .



Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let σi , σ
′
i be two mixed strategies of player i . Then σi strictly

dominates σ′i if for all mixed strategies of the opponents, σ−i ,

ui (σi , σ−i ) > ui (σ
′
i , σ−i ).



Mixed strategies

If σi is better than σ′i no matter what pure strategy opponents
play, then σi is also strictly better than σ′i no matter what mixed
strategies opponents play

Theorem
Let σi and σ′i be two mixed strategies of player i . Then σi strictly
dominates σ′i if and only if for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).



Proof- Part 1

I Since S−i ⊆ Σ−i , if σi strictly dominates σ′i

I Then for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).
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Proof - Part 2

I To prove the other direction, suppose that for all s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).

I For any σ−i ,

ui (σi , σ−i ) =
∑
si∈Si

∑
s−i∈S−i

σi (si )σ−i (s−i )ui (si , s−i )

=
∑

s−i∈S−i

σ−i (s−i )
∑
si∈Si

σi (si )ui (si , s−i )

=
∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i )

I So

ui (σi , σ−i ) =
∑

s−i∈S−i

σ−i (s−i )ui (σi , s−i ) >
∑

s−i∈S−i

σ−i (s−i )ui (σ
′
i , s−i ) = ui (σ

′
i , σ−i )
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Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let σi , σ
′
i be two mixed strategies of player i . Then σi strictly

dominates σ′i if for all pure strategies of the opponents, s−i ∈ S−i ,

ui (σi , s−i ) > ui (σ
′
i , s−i ).
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Battle of the sexes

G P

G 2,1 0,0

P 0,0 1,2
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P 0,0 1,2

I There are two pure strategy equilibria (G ,G ) and (P,P)

I We now look for Nash equilibria that involve randomizationby
the players
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Battle of the sexes

I Let p be the probability with which player 1 chooses G and q
be the probability with which player 2 plays G

I
u1(p, q) = p(2q) + (1− p)(1− q).

I Case 1: If q > 1/3, then 2q > 2/3 > 1− q and therefore, the
best response is p = 1

I Case 2: if q = 1/3, then 2q = 2/3 = 1− q and therefore, the
best response is p ∈ [0, 1]

I Case 3: If q < 1/3, then 2q < 2/3 < 1− q and therefore the
best response is p = 0

I Thus, the best response function is given by:

BR1(q) =


1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3.
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Battle of the sexes

Similarly we can calculate the best response function for player 2
and we get:

BR2(p) =


1 if p > 2/3

[0, 1] if p = 2/3

0 if p < 2/3.



Battle of the sexes

q

p
O

beta2(p)

betal(q)

1

l

I Thus, there are three points where the best response curves
cross: (1, 1), (0, 0, ), (2/3, 1/3)

I The first two points correspond to the pure strategy NE which
we already found from before

I The last is a strictly mixed Nash equilibrium in which both
players randomize.
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Consider the following game

E F G

A 5, 10 5, 3 3, 4

B 1, 4 7, 2 7, 6

C 4, 2 8, 4 3, 8

D 2, 4 1, 3 8, 4



I Consider σ1 = (13 ,
1
4 ,

1
4 ,

1
6))

I EU(E , θ1) = 101
3 + 41

4 + 21
4 + 41

6 = 5.5

I EU(F , θ1) = 31
3 + 21

4 + 41
4 + 31

6 = 3

I EU(G , θ1) = 41
3 + 61

4 + 81
4 + 41

6 = 5.5

I Then BR2(θ1) = {(p, 0, 1− p), p ∈ [0, 1]}
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I G dominates F (player 2)

I D dominates B (player 1)
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Reduced game

E G

A 5, 10 3, 4

C 4, 2 3, 8

D 2, 4 8, 4



I Note that σ1 = (p, 0, 1− p) with p > 2
3 dominates C

I EU(σ1,E ) = 5p + 2(1− p) = 3p + 2

I EU(σ1,G ) = 3p + 8(1− p) = 8− 3p

I

EU(σ1,E ) > U(C ,E )

3p + 2 > 4

p >
2

3

EU(σ1,G ) > EU(C ,G )

8− 3p > 3

p <
5

3



Reduced game

E G

A 5, 10 3, 4

D 2, 4 8, 4



I Lets find BR1(θ2 = (q, 1− q))

I EU(A, θ2) = 5q + 3(1− q) = 2q + 3

I EU(D, θ2) = 2q + 8(1− q) = 8− 6q

I 8− 6q > 2q + 3 if 5
8 > q

I 8− 6q < 2q + 3 if 5
8 < q

I Thus

BR1(q, 1− q) =


σ1 = (0, 1) if 0 ≤ q < 5

8

σ1 = (1, 0) if 5
8 > q ≥ 1

σ1 = (p, 1− p) if 5
8 = q
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Theorem (Nash’s Theorem)

Suppose that the pure strategy set Si is finite for all players i . A
Nash equilibrium always exists.



Proof (just the intuition)

I Proof is very similar to general equilibrium proof

I Two parts:

1. A Nash equilibrium is a fixed point of the best response
functions

2. A finite game with mixed strategies has all the pre-requisites to
guarantee a fixed point

I Remember X ∗ is a fixed point of F (X ) if and only if
F (X ∗) = X ∗
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Proof - Part 1

I Let (s∗1 , ..., s
∗
n) be a Nash equilibrium

I Then s∗i = BRi (s
∗
−i ) for all i

I Let Γ(s1, ..., sn) = (BR1(s−1),BR2(s−2), ...,BRn(s−n))

I Γ(s∗1 , ..., s
∗
n) = (s∗1 , ..., s

∗
n)

I Therefore (s∗1 , ..., s
∗
n) is a fixed point of Γ
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Proof - Part 2

Theorem (Kakutani fixed-point theorem)

Let Γ : Ω→ Ω be a correspondence that is upper semi-continuous,
Ω be non empty, compact (closed and bounded), and convex ⇒ Γ
has at least one fixed point



Proof - Part 2

So we want to apply Kakutani’s theorem. If the game is finite and
we allow mixed strategies then

I Γ : Σ→ Σ

I Σ is compact: It includes the boundary (pure strategies) and
is bounded (the game only has a finite set of strategies)

I Σ is convex: By allowing mixed strategies, we automatically
make it convex

I Γ(s1, ..., sn) = (BR1(s−1),BR2(s−2), ...,BRn(s−n)) is upper
semi-continous. Why?

I If two pure strategies are in the best response of a player
(si , s

′
i ∈ BRi (s−i )), then any mixing of those strategies is also

a best response (i.e., pσ + (1− p)σ ∈ BRi (s−i ))

I Therefore if Γ(s1, ..., sn) has two images, those two images are
connected (via all the mixed strategies that connect those two
images)

I That happens to be the definition of upper semi-continous
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