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» This game is entirely stochastic (ability has nothing to do
with your chances of winning)
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Consider rock/paper/scissors

Rock | Paper | Scissors
Rock 0,0 -1,1 1-1
Paper 1,-1 0,0 -1,1

Scissors | -1,1 1-1 0,0

» This game is entirely stochastic (ability has nothing to do
with your chances of winning)

» The probability of winning with every strategy is the same

» Thus, people tend choose randomly which of the three
options to play

» We would like the concept of Nash equilibrium to reflect this
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Mixed strategies

Definition
A mixed strategy o; is a function o; : S; — [0, 1] such that

Z U,‘(S,‘) =1.
S;ES;
» o;(s;) represents the probability with which player i plays s;

> A pure strategy is simply a mixed strategy o; that plays
some strategy a; € S; with probability one

» We will denote the set of all mixed strategies of player i by ¥;
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Mixed strategies

» Given a mixed strategy profile (o1,02,...,0,), we need a way
to define how players evaluate payoffs of mixed strategy
profiles

u(o1,00,...,00) = Z ui(s1, 82, .., Sn)o1(s1)o2(s2) - - on(sn).
seS
» For instance, assume my opponent is playing randomizing over
paper and scissors with probability 1 (i.e., o_; = (0, 3, 3))
» The expected utility of playing “rock” is
1 1

E(Ui(rock,0-i)) = —15 +15 =0
> If I'm randomizing over rock and scissors (i.e., s; = (3,0, 1))
then
E(Ui(o,0-)) = 71% + —1% + 1% + 0% = —%
—— —~— ~

rock vs paper rock vs scissors scissors vs paper scissors vs scissors



Mixed strategies

Definition
A (possibly mixed) strategy profile (o5, 0%,...,05n)* is a Nash
equilibrium if and only if for every i,

ui(of,0*;) > ui(o;,0*;)

for all o; € X;.



Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let o, 0} be two mixed strategies of player i. Then o; strictly
dominates o7, if for all mixed strategies of the opponents, o_;,

u;(a,-, U_,') > u;(a,{, CT_,').



Mixed strategies

If o; is better than o} no matter what pure strategy opponents
play, then o; is also strictly better than o} no matter what mixed
strategies opponents play

Theorem
Let oj and o’ be two mixed strategies of player i. Then o; strictly
dominates o' if and only if for all s_; € S_j,

U,‘(J,’, S_,') > U,'(O'§7 S_,').
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» Since S_; C ¥ _;, if o; strictly dominates o/

» Then for all s_; € S_;,

ui(oi, s—i) > ui(oi,s—i).



Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,

u,-(cr,-, S_,') > u,-(af, S_,').



Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,
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Proof - Part 2

» To prove the other direction, suppose that for all s_; € S_;,

u,-(a,-, S_,') > u,-(af, S_,').

» For any o_j,
Ui(Uthi): Z Z Ui(Si)Ufi(Sfi)Ui(ShS—f)
S;€S;s_;€S_;
= Z 07,'(57,')ZUi(Si)Ui(Si,Sfi)
s_jES_; S;iES;
= > oi(s)ui(on,s-i)
s_;€S_;
> So

uiloi o)) = > o_ils_ulei,s_i) > > o_ils—ui(o],s_;) = ui(o],

s_jES_; s_jES_;

o_j)



Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let o, 0} be two mixed strategies of player i. Then o; strictly
dominates o, if for all pure strategies of the opponents, s_; € S_;,

u,-(a;, S_,') > u;(a,{, S_,').
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Battle of the sexes

()

2,1

0,0

0,0

1,2
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Battle of the sexes

G P
G|21(00
P|100]|12

» There are two pure strategy equilibria (G, G) and (P, P)

» We now look for Nash equilibria that involve randomizationby
the players
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best response is p =1
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>

Let p be the probability with which player 1 chooses G and g
be the probability with which player 2 plays G

ui(p,q) = p(2q) + (1 — p)(1 — q).

Case 1: If g > 1/3, then 2q > 2/3 > 1 — g and therefore, the
best response is p =1

Case 2: if ¢ = 1/3, then 2g = 2/3 = 1 — g and therefore, the
best response is p € [0, 1]

Case 3: If g < 1/3, then 2g < 2/3 < 1 — g and therefore the
best response is p = 0



Battle of the sexes

| 2

>

Let p be the probability with which player 1 chooses G and g
be the probability with which player 2 plays G

u(p,q) = p(29) + (1 = p)(1 —q).
Case 1: If g > 1/3, then 2q > 2/3 > 1 — g and therefore, the
best response is p =1
Case 2: if ¢ = 1/3, then 2g = 2/3 = 1 — g and therefore, the
best response is p € [0, 1]
Case 3: If g < 1/3, then 2g < 2/3 < 1 — g and therefore the
best response is p = 0

Thus, the best response function is given by:
1 if g>1/3

BRi(q) ={10,1] ifg=1/3
0 if g<1/3.



Battle of the sexes

Similarly we can calculate the best response function for player 2
and we get:
1 if p>2/3
BRx(p) =1 [0,1] if p=2/3
0 if p<2/3.
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Battle of the sexes

0o

» Thus, there are three points where the best response curves
cross: (1,1),(0,0,),(2/3,1/3)

B Tl o £ o o o DA R P e T W I e Py



Consider the following game

7,2(7,6
8,4 3,8
1,318, 4

1,4
4,2

2,4

A|510|5 3|34




1

» Consider 01 = (3, %, %,

)

o=
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> Consider 01 = (3, %, 7,

)

o=

> BU(E.0) =10} + 4} 21 443 =55

> EU(G.6,) =41 + 61 + 81 14l =55



1

Consider o1 = (3, %7 %’

)

o=

BU(E ) = 104 + 43 + 24 + 41 =55
EU(F,01) =3 +2; +4; +31 =3
EU(G,0,) =41 + 6% +8L+4t =55

Then BR2(91) = {(p,O, 1-— p), pc [0, 1]}



» G dominates F (player 2)



» G dominates F (player 2)

» D dominates B (player 1)



Reduced game

3,8

8, 4

4,2

2,4

A|5 1013, 4




» Note that o1 = (p,0,1 — p) with p > % dominates C
» EU(o1,E)=5p+2(1—p)=3p+2

» EU(01,G) =3p+8(1—p)=8—-3p

>

EU(o1,E) > U(C,E)
3p+2 >

4
S 2
P 3

EU(s1,G) > EU(C,G)
8—-3p > 3
5

P<§



Reduced game

G

3,4
8, 4




> Lets find BR1(6> = (9,1 — q))



> Lets find BR1(6> = (9,1 — q))

> EU(A,02) =5q+3(1— q) =29 +3



» Lets find BR1(02 = (g,1 — q))
> EU(A,62) =5q+3(1—q)=2q9+3

» EU(D,6,) =2q+8(1—q) =8—6q



» Lets find BR1(02 = (g,1 — q))
> EU(A,62) =5q+3(1—q)=2q9+3
» EU(D,6,) =2q+8(1—q) =8—6q

> 8-6g>2q+3if2>gq



Lets find BRy(62 = (q,1 — q))
EU(A,6.) =59+ 3(1—q)=2q+3
EU(D,6;) =29 +8(1—q)=8—6q
8—6g>29+3if3>gq

8—6g<29+3if2<gq



Lets find BRy(62 = (q,1 — q))
EU(A,0,) =5q+3(1—q)=2q+3
EU(D,6;) =29 +8(1—q)=8—6q
8—6g>29+3if3>gq
8—6g<29+3if2<gq

Thus

o1 =(0,1) if0<g<3
BRi(g,1—q) =4 o1 = (1,0) if2>q>1
o1=(p,1-p) f3=gq
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» EU(01,E) =10p+4(1 —p) =6p + 4

> EU(01,G) =4p+4(1—p)=4



» Lets find BRy(61 = (p,1 — p))
» EU(01,E) =10p+4(1 —p) =6p + 4
> EU(01,G) = 4p+4(1 — p) = 4

> 6p+4>4ifp>0



v

Lets find BRy(61 = (p,1 — p))

EU(61, E) = 10p + 4(1 — p) = 6p + 4
EU(01,G) = 4p+4(1—p) =4
bp+4>4ifp>0

6p+4<4ifp<O.



v

Lets find BRy(61 = (p,1 — p))
EU(61, E) = 10p + 4(1 — p) = 6p + 4
EU(01,G) = 4p+4(1—p) =4
bp+4>4ifp>0

6p+4<4if p<O.

Thus

if p>0
if p=0



Best responses

1.0

0.8

0.6

0.4

0.2

0.0
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Theorem (Nash's Theorem)

Suppose that the pure strategy set S; is finite for all players i. A
Nash equilibrium always exists.
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Proof (just the intuition)

» Proof is very similar to general equilibrium proof
> Two parts:

1. A Nash equilibrium is a fixed point of the best response
functions

2. A finite game with mixed strategies has all the pre-requisites to
guarantee a fixed point

» Remember X* is a fixed point of F(X) if and only if
F(X*) = X*
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Proof - Part 1

> Let (s;,...,s;) be a Nash equilibrium

ce99n

» Then s’ = BR;(s*;) for all i

v

Let I'(s1, ..., sn) = (BR1(s-1), BRa2(5-2), ..., BRa(s-n))

> [(sf,...,sn) =(s},...,sp)

» Therefore (s, ...,s;) is a fixed point of I'

ce39n



Proof - Part 2

Theorem (Kakutani fixed-point theorem)

Let T : Q — Q be a correspondence that is upper semi-continuous,
Q be non empty, compact (closed and bounded), and convex = '
has at least one fixed point
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Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and
we allow mixed strategies then

> =%

» Y is compact: It includes the boundary (pure strategies) and
is bounded (the game only has a finite set of strategies)

> Y is convex: By allowing mixed strategies, we automatically
make it convex
> (s1, ..., 5n) = (BRi(s-1), BRa(5-2), ..., BRs(s-p)) is upper
semi-continous. Why?
» |If two pure strategies are in the best response of a player
(si,s! € BRi(s—;)), then any mixing of those strategies is also
a best response (i.e., po + (1 — p)o € BRi(s_;))
» Therefore if ['(sy,...,5,) has two images, those two images are
connected (via all the mixed strategies that connect those two
images)

» That happens to be the definition of upper semi-continous
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