Lecture 13: Game Theory // Nash equilibrium

Mauricio Romero

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play
- We would like the concept of Nash equilibrium to reflect this

Mixed strategies

Definition
A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays s_{i}

Mixed strategies

Definition

A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays s_{i}
- A pure strategy is simply a mixed strategy σ_{i} that plays some strategy $a_{i} \in S_{i}$ with probability one

Mixed strategies

Definition

A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays s_{i}
- A pure strategy is simply a mixed strategy σ_{i} that plays some strategy $a_{i} \in S_{i}$ with probability one
- We will denote the set of all mixed strategies of player i by Σ_{i}

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

Mixed strategies

- Given a mixed strategy profile ($\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$), we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- The expected utility of playing "rock" is

$$
E\left(U_{i}\left(\text { rock }, \sigma_{-i}\right)\right)=-1 \frac{1}{2}+1 \frac{1}{2}=0
$$

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- The expected utility of playing "rock" is

$$
E\left(U_{i}\left(\text { rock }, \sigma_{-i}\right)\right)=-1 \frac{1}{2}+1 \frac{1}{2}=0
$$

- If I'm randomizing over rock and scissors (i.e., $\left.s_{i}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)$ then
$E\left(U_{i}\left(\sigma, \sigma_{-i}\right)\right)=\underbrace{-1 \frac{1}{4}}_{\text {rock vs paper }}+\underbrace{-1 \frac{1}{4}}_{\text {rock vs scissors }}+\underbrace{1 \frac{1}{4}}_{\text {scissors vs paper }}+\underbrace{0 \frac{1}{4}}_{\text {scissors vs scissors }}=-\frac{1}{4}$

Mixed strategies

Definition

A (possibly mixed) strategy profile $\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}\right)^{*}$ is a Nash equilibrium if and only if for every i,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)
$$

for all $\sigma_{i} \in \Sigma_{i}$.

Mixed strategies

Definition (Mixed Strategy Dominance Definition A)

Let $\sigma_{i}, \sigma_{i}^{\prime}$ be two mixed strategies of player i. Then σ_{i} strictly dominates σ_{i}^{\prime} if for all mixed strategies of the opponents, σ_{-i},

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

Mixed strategies

If σ_{i} is better than σ_{i}^{\prime} no matter what pure strategy opponents play, then σ_{i} is also strictly better than σ_{i}^{\prime} no matter what mixed strategies opponents play

Theorem

Let σ_{i} and σ_{i}^{\prime} be two mixed strategies of player i. Then σ_{i} strictly dominates σ_{i}^{\prime} if and only if for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

Proof- Part 1

- Since $S_{-i} \subseteq \Sigma_{-i}$, if σ_{i} strictly dominates σ_{i}^{\prime}

Proof- Part 1

- Since $S_{-i} \subseteq \Sigma_{-i}$, if σ_{i} strictly dominates σ_{i}^{\prime}
- Then for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right) .
$$

- For any σ_{-i},

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{-i}\right) & = \\
& =\sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} \sigma_{i}\left(s_{i}\right) \sigma_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& \sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)
\end{aligned}
$$

Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right) .
$$

- For any σ_{-i},

$$
\begin{aligned}
u_{i}\left(\sigma_{i}, \sigma_{-i}\right) & =\quad \sum_{s_{i} \in S_{i}} \sum_{s_{-i} \in S_{-i}} \sigma_{i}\left(s_{i}\right) \sigma_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) \sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& =\quad \sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)
\end{aligned}
$$

- So

$$
u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}, s_{-i}\right)>\sum_{s_{-i} \in S_{-i}} \sigma_{-i}\left(s_{-i}\right) u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)=u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

Mixed strategies

Definition (Mixed Strategy Dominance Definition B)

Let $\sigma_{i}, \sigma_{i}^{\prime}$ be two mixed strategies of player i. Then σ_{i} strictly dominates σ_{i}^{\prime} if for all pure strategies of the opponents, $s_{-i} \in S_{-i}$,

$$
u_{i}\left(\sigma_{i}, s_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, s_{-i}\right)
$$

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Battle of the sexes

	G	P
G	2,1	0,0
P	0,0	1,2

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

- There are two pure strategy equilibria (G, G) and (P, P)

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

- There are two pure strategy equilibria (G, G) and (P, P)
- We now look for Nash equilibria that involve randomizationby the players

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
u_{1}(p, q)=p(2 q)+(1-p)(1-q)
$$

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
u_{1}(p, q)=p(2 q)+(1-p)(1-q)
$$

- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is $p=1$

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
u_{1}(p, q)=p(2 q)+(1-p)(1-q)
$$

- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is $p=1$
- Case 2: if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is $p \in[0,1]$

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
u_{1}(p, q)=p(2 q)+(1-p)(1-q)
$$

- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is $p=1$
- Case 2: if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is $p \in[0,1]$
- Case 3: If $q<1 / 3$, then $2 q<2 / 3<1-q$ and therefore the best response is $p=0$

Battle of the sexes

- Let p be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
u_{1}(p, q)=p(2 q)+(1-p)(1-q)
$$

- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is $p=1$
- Case 2: if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is $p \in[0,1]$
- Case 3: If $q<1 / 3$, then $2 q<2 / 3<1-q$ and therefore the best response is $p=0$
- Thus, the best response function is given by:

$$
B R_{1}(q)= \begin{cases}1 & \text { if } q>1 / 3 \\ {[0,1]} & \text { if } q=1 / 3 \\ 0 & \text { if } q<1 / 3\end{cases}
$$

Battle of the sexes

Similarly we can calculate the best response function for player 2 and we get:

$$
B R_{2}(p)= \begin{cases}1 & \text { if } p>2 / 3 \\ {[0,1]} & \text { if } p=2 / 3 \\ 0 & \text { if } p<2 / 3\end{cases}
$$

Battle of the sexes

- Thus, there are three points where the best response curves cross: $(1,1),(0,0),,(2 / 3,1 / 3)$

Battle of the sexes

- Thus, there are three points where the best response curves cross: $(1,1),(0,0),,(2 / 3,1 / 3)$

Battle of the sexes

- Thus, there are three points where the best response curves cross: $(1,1),(0,0),,(2 / 3,1 / 3)$

Consider the following game

	E	F	G
A	5,10	5,3	3,4
B	1,4	7,2	7,6
C	4,2	8,4	3,8
D	2,4	1,3	8,4

- Consider $\left.\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)\right)$
- Consider $\left.\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)\right)$
- $\mathbb{E} U\left(E, \theta_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Consider $\left.\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)\right)$
- $\mathbb{E} U\left(E, \theta_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \theta_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- Consider $\left.\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)\right)$
- $\mathbb{E} U\left(E, \theta_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \theta_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- $\mathbb{E} U\left(G, \theta_{1}\right)=4 \frac{1}{3}+6 \frac{1}{4}+8 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Consider $\left.\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)\right)$
- $\mathbb{E} U\left(E, \theta_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \theta_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- $\mathbb{E} U\left(G, \theta_{1}\right)=4 \frac{1}{3}+6 \frac{1}{4}+8 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Then $B R_{2}\left(\theta_{1}\right)=\{(p, 0,1-p), p \in[0,1]\}$
- G dominates F (player 2)
- G dominates F (player 2)
- D dominates B (player 1)

Reduced game		
E	G	
A	5,10	3,4
C	4,2	3,8
D	2,4	8,4

- Note that $\sigma_{1}=(p, 0,1-p)$ with $p>\frac{2}{3}$ dominates C
- $\mathbb{E} U\left(\sigma_{1}, E\right)=5 p+2(1-p)=3 p+2$
- $\mathbb{E} U\left(\sigma_{1}, G\right)=3 p+8(1-p)=8-3 p$

$$
\begin{aligned}
\mathbb{E} U\left(\sigma_{1}, E\right) & >U(C, E) \\
3 p+2 & >4 \\
p & >\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E} U\left(\sigma_{1}, G\right) & >\mathbb{E} U(C, G) \\
8-3 p & >3 \\
p & <\frac{5}{3}
\end{aligned}
$$

Reduced game

	E	G
A	5,10	3,4
D	2,4	8,4

- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \theta_{2}\right)=5 q+3(1-q)=2 q+3$
- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \theta_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \theta_{2}\right)=2 q+8(1-q)=8-6 q$
- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \theta_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \theta_{2}\right)=2 q+8(1-q)=8-6 q$
- $8-6 q>2 q+3$ if $\frac{5}{8}>q$
- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \theta_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \theta_{2}\right)=2 q+8(1-q)=8-6 q$
- $8-6 q>2 q+3$ if $\frac{5}{8}>q$
- $8-6 q<2 q+3$ if $\frac{5}{8}<q$
- Lets find $B R_{1}\left(\theta_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \theta_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \theta_{2}\right)=2 q+8(1-q)=8-6 q$
- $8-6 q>2 q+3$ if $\frac{5}{8}>q$
- $8-6 q<2 q+3$ if $\frac{5}{8}<q$
- Thus

$$
B R_{1}(q, 1-q)= \begin{cases}\sigma_{1}=(0,1) & \text { if } 0 \leq q<\frac{5}{8} \\ \sigma_{1}=(1,0) & \text { if } \frac{5}{8}>q \geq 1 \\ \sigma_{1}=(p, 1-p) & \text { if } \frac{5}{8}=q\end{cases}
$$

- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\theta_{1}, E\right)=10 p+4(1-p)=6 p+4$
- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\theta_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\theta_{1}, G\right)=4 p+4(1-p)=4$
- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\theta_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\theta_{1}, G\right)=4 p+4(1-p)=4$
- $6 p+4>4$ if $p>0$
- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\theta_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\theta_{1}, G\right)=4 p+4(1-p)=4$
- $6 p+4>4$ if $p>0$
- $6 p+4<4$ if $p<0$.
- Lets find $B R_{2}\left(\theta_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\theta_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\theta_{1}, G\right)=4 p+4(1-p)=4$
- $6 p+4>4$ if $p>0$
- $6 p+4<4$ if $p<0$.
- Thus

$$
B R_{2}(p, 1-p)= \begin{cases}\sigma_{2}=(1,0) & \text { if } p>0 \\ \sigma_{2}=(q, 1-q) & \text { if } p=0\end{cases}
$$

Best responses

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Lecture 13: Game Theory // Nash equilibrium

Mixed strategies

Examples

Nash's Theorem

Theorem (Nash's Theorem)
Suppose that the pure strategy set S_{i} is finite for all players i. A Nash equilibrium always exists.

Proof (just the intuition)

- Proof is very similar to general equilibrium proof

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

1. A Nash equilibrium is a fixed point of the best response functions

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

1. A Nash equilibrium is a fixed point of the best response functions
2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed point

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

1. A Nash equilibrium is a fixed point of the best response functions
2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed point

- Remember X^{*} is a fixed point of $F(X)$ if and only if $F\left(X^{*}\right)=X^{*}$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$
- $\Gamma\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$
- $\Gamma\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$
- Therefore $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a fixed point of Γ

Proof - Part 2

Theorem (Kakutani fixed-point theorem)
Let $\Gamma: \Omega \rightarrow \Omega$ be a correspondence that is upper semi-continuous, Ω be non empty, compact (closed and bounded), and convex $\Rightarrow \Gamma$ has at least one fixed point

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\Gamma: \Sigma \rightarrow \Sigma$

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?
- If two pure strategies are in the best response of a player ($s_{i}, s_{i}^{\prime} \in B R_{i}\left(s_{-i}\right)$), then any mixing of those strategies is also a best response (i.e., $\left.p \sigma+(1-p) \sigma \in B R_{i}\left(s_{-i}\right)\right)$

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?
- If two pure strategies are in the best response of a player ($s_{i}, s_{i}^{\prime} \in B R_{i}\left(s_{-i}\right)$), then any mixing of those strategies is also a best response (i.e., $\left.p \sigma+(1-p) \sigma \in B R_{i}\left(s_{-i}\right)\right)$
- Therefore if $\Gamma\left(s_{1}, \ldots, s_{n}\right)$ has two images, those two images are connected (via all the mixed strategies that connect those two images)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?
- If two pure strategies are in the best response of a player ($s_{i}, s_{i}^{\prime} \in B R_{i}\left(s_{-i}\right)$), then any mixing of those strategies is also a best response (i.e., $\left.p \sigma+(1-p) \sigma \in B R_{i}\left(s_{-i}\right)\right)$
- Therefore if $\Gamma\left(s_{1}, \ldots, s_{n}\right)$ has two images, those two images are connected (via all the mixed strategies that connect those two images)
- That happens to be the definition of upper semi-continous

