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1. Player 1 makes a proposal (x , 1000− x) of how to split 100
pesos among (100, 900), . . . , (800, 200), (900, 100)

2. Player 2 accepts or rejects the proposal

3. If player 2 rejects both obtain 0. If 2 accepts, then the payoffs
or the two players are determined by (x , 1000− x)



I In any pure strategy SPNE, player 2 accepts all offers

I In any SPNE, player 1 makes the proposal (900, 100)
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I This is far from what happens in reality

I When extreme offers like (900, 100) are made, player 2 rejects
in many cases

I Player 2 may care about inequality or positive utility
associated with “punishment” aversion
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I Two players are deciding how to split a pie of size 1

I The players would rather get an agreement today than
tomorrow (i.e., discount factor)
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I Player 1 makes an offer θ1

I Player 2 accepts or rejects the proposal

I If player 2 rejects, player 2 makes an offer θ2

I If player 1 accepts or rejects the proposal

I If player 1 rejects, player 1 makes an offer θ3

I ... and on and on for T periods

I If no offer is ever accepted, both payoffs equal zero
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The discount factor is δ ≤ 1.
If Player 1 offer is accepted by Player 2 in round m,

π1 = δmθm,

π2 = δm(1− θm).

If Player 2 offer is accepted, reverse the subscripts



I Consider first the game without discounting

I There is a unique SPNE:

The player that makes the last offer
gets the whole pie

I Last-mover advantage
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I In the game with discounting, the total value of the pie is 1 in
the first period, δ in the second, and so forth

I Assume Player 1 makes the last offer

I In period T , if it is reached, Player 1 would offer 0 to Player 2

I Player 2 would accept (indifferent between accepting and
rejecting)

I In period (T − 1), Player 2 could offer Smith δ, keeping
(1− δ) for himself

I Player 1 would accept (indifferent between accepting and
rejecting) since the whole pie in the next period is worth δ
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I In period (T − 2), Player 1 would offer Player 2 δ(1− δ),
keeping (1− δ(1− δ)) for himself

I Player 2 would accept since he can earn (1− δ) in the next
period, which is worth δ(1− δ) today

I In period (T − 3), Player 2 would offer Player 1
δ[1− δ(1− δ)], keeping (1− δ[1− δ(1− δ)]) for himself

I Player 1 would accept...

I ...

I In equilibrium, the very first offer would be accepted, since it
is chosen precisely so that the other player can do no better
by waiting
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Table 1 shows the progression of Player 1’s shares when δ = 0.9.

Table 1: Alternating Offers over Finite Time
Round 1’s 2’s Total Who

share share value offers?

T − 3 δ(1− δ(1− δ)) 1− δ(1− δ(1− δ)) δT−4 2

T − 2 1− δ(1− δ) δ(1− δ) δT−3 1

T − 1 δ 1− δ δT−2 2

T 1 0 δT−1 1



I If T = 3 (i.e, 1 offers, 2 offers, 1 offers)

I One offers δ(1− δ), 2 accepts in period 1
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I Player 1 always does a little better when he makes the offer
than when Player 2 does

I If we consider just the class of periods in which Player 1
makes the offer, Player 1’s share falls
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I Recall back to the model of Cournot duopoly, where two firms
set quantities

I Suppose instead that the firms move in sequence which is
called a Stackelberg competition game

I Suppose that the inverse demand function is given by:

P(q1 + q2).

I Firms have the cost functions ci (qi ).
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set quantities

I Suppose instead that the firms move in sequence which is
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Te timing of the game is given by:

1. First Firm 1 chooses q1 ≥ 0

2. Second Firm 2 observes the chosen q1 and then chooses q2

I The game tree in this game is then depicted by an infinite tree



I Let us write down the normal form representation of this
game.

I A pure strategy for firm 1 is just a choice of q1 ≥ 0

I A strategy for firm 2 specifies what it does after every choice
of q1

I Firm 2’s strategy is a function q2(q1) which specifies exactly
what firm 2 does if q1 is the chosen strategy of player 1
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The utility functions for firm i when firm 1 chooses q1 and firm 2
chooses the strategy (or function) q2(·) is given by:

π1(q1, q2(·)) = P(q1 + q2(q1))q1 − c1(q1)

π2(q1, q2(·)) = P(q1 + q2(q1))q2(q1)− c2(q2(q1))



I There are many Nash equilibria of this game which are a bit
counterintuitive

I Cconsider the following specific game with demand function
given by:

P(q1 + q2) = A− q1 − q2.

I Let the marginal costs of both firms be zero

I Then the normal form simplifies:

u1(q1, q2(·)) = (A− q1 − q2(q1))q1,

u2(q1, q2(·)) = (A− q1 − q2(q1))q2(q1).
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I What is an example of a Nash equilibrium of this game?

I Let α ∈ [0,A) and consider the following strategy profile:

q∗1 = α, q∗2(q1) =

{
A if q1 6= α,
A−α
2 if q1 = α.

I Let us check that indeed this constitutes a Nash equilibrium
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I First we check the best response of player 1

I If player 2 plays q∗2 , then player 1’s utility function is given by:

u1(q1, q
∗
2(·)) =

{(
A− α−

(
A−α
2

))
α > 0 if q1 = α

−q21 ≤ 0 if q1 6= α.

I Thus,
max
q1≥0

u1(q1, q
∗
2(·))

is solved at q∗1 = α

I Firm 1 is best responding to player 2’s strategy.
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I Suppose that firm 1 plays the strategy q∗1 . Is firm 2 best
responding?

I Firm 2’s utility function is given by:

u2(q∗1 , q2(·)) = (A− α− q2(α))q2(α).

I Thus, firm 2 wants to choose the optimal strategy q2(·) that
maximizes the following utility:

max
q2(·)

(A− α− q2(α))q2(α)

I By the first order condition, we know that

q2(α) =
A− α

2
.

I The utility function of firm 2 does not depend at all on what
it chooses for q∗2(q1) when q1 6= α

I In particular, q∗2 is a best response for firm 2
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I The above observation allows us to conclude that there are
many Nash equilibria of this game

I In fact there are many more than the ones above

I The Nash equilibria highlighted above all lead to different
predictions

I The equilibrium outcome of the above Nash equilibrium above
is that firm 1 sets the price α and firm 2 sets the price
(A− α)/2.

I In particular, in the Nash equilibrium corresponding to α = 0,
the equilibrium outcome is for firm 1 to choose a quantity of 0
and firm 2 setting a price of A/2

I This would be the same outcome if firm 2 were the
monopolist in this market
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I Consider the equilibrium in which α = 0

I This equilibrium is highly counterintuitive because firm 2
obtains monopoly profits

I The reason is that essentially firm 2 is playing a strategy that
involves non-credible threats

I Firm 2 is threatening to overproduce if firm 1 produces
anything at all

I As a result, the best that firm 1 can do is to produce nothing

I If firm 1 were to hypothetically choose q1 > 0, then firm 2
would obtain negative profits if it indeed follows through with
q∗2(q1).
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I Many Nash equilibria are counterintuitive in the Stackelberg
game

I To eliminate such counterintuitive equilibria, we focus instead
on SPNE instead of NE

I Lets continue with the setting in which marginal costs are
zero and the demand function is given by A− q1 − q2
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I We always start with the smallest/last subgames which
correspond to the decisions of firm 2 after firm 1’s choice of
q1 has been made

I The utility function of firm 2 is given by:

u2(q1, q2(·)) = (A− q1 − q2(q1))q2(q1).

I So, player 2 solves:

max
q2(·)

(A− q1 − q2(q1))q2(q1).
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I Case 1: q1 > A

I In this case, the best response of firm 2 is to set a quantity
q∗2(q1) = 0 since producing at all gives negative profits.

I Case 2: q1 ≤ A

I In this case, the first order condition implies:

q∗2(q1) =
A− q1

2
.
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I Thus, in any SPNE, player 2 must play the following strategy:

q∗2(q1) =

{
A−q1

2 if q1 ≤ A

0 if q1 > A.



I Then player 1’s utility function given that player 2 plays q∗2 is
given by:

u1(q1, q
∗
2(·)) = q1(A−q1−q∗2(q1)) =

{
q1(A− q1) if q1 > A,

q1
A−q1

2 if q1 ≤ A.

I Thus, firm 1 maximizes maxq1 u1(q1, q
∗
2(·))

I Firm 1 will never choose q1 > A since then it obtains negative
profits

I Thus, firm 1 maximizes:

max
q1∈[0,A]

q1
A− q1

2
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I The first order condition for this problem is given by:

q∗1 =
A

2

I The SPNE of the Stackelberg game is given by:(
q∗1 =

A
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, q∗2(q1) =

A− q1
2

)

I The equilibrium outcome is for firm 1 to choose A/2 and
firm 2 to choose A/4
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I The Cournot game was one in which all firms chose quantities
simultaneously

I In that game, since there is only one subgame, SPNE was the
same as the set of NE

I Lets solve for the set of SPNE (which is the same as NE) in
the Cournot game with the same demand function and same
costs

I In this case, (q∗1 , q
∗
2) is a NE if and only if

q∗1 ∈ BR1(q∗2), q∗2 ∈ BR2(q∗1).
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I For q∗1 ∈ BR1(q∗2), we need q∗1 to solve the following
maximization problem:

max
q1≥0

(A− q1 − q∗2)q1.

I By the FOC, we have:

q∗1 =
A− q∗2

2
.

I Similarly for q∗2 ∈ BR2(q∗1),

q∗2 =
A− q∗1

2
.

I As a result, solving these two equations, we get:

q∗1 = q∗2 =
A

3
.
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In the Cournot game, note that firms’ payoffs are:

πc1 =
A2

9
, πc2 =

A2

9
.

As we already saw, this was not Pareto efficient since each firm is
getting a payoff that is strictly less than 1/2 of the monopoly
profits.



I In the Stackelberg competition game, the total quantity
supplied is 3

4A

I Thus, the firms’ payoffs in the SPNE is:

πs1 =
1

4
A · A

2
=

A2

8
, πs2 =

1

4
A · A

4
=

A2

16
.

I Firm 1 obtains a better payoff than firm 2

I This is intuitive since firm 1 always has the option of choosing
the Cournot quantity q1 = A/3, in which case firm 2 will
indeed choose q∗2(q1) = A/3 giving a payoff of A2/9

I But by choosing something optimal, firm 1 will be able to do
even better
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I We use the Stackelberg model analyzed earlier to study entry
deterrence in oligopolistic markets.

I Analyze the following game

1. Monopolist chooses qM ∈ [0,A].
2. Potential entrant decides whether to enter or not. Fixed cost

of entering is given by F > 0. If the entrant does not enter,
qE = 0.

3. If potential entrant enters, she chooses qE ∈ [0,A].
4. The price P is determined according to the inverse demand

function P = A− qM − qE and firms receive their payoffs,
where there are no other costs to production than the one just
mentioned above.
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If the monopolist faced no entrant, then he would solve the
following maximization problem:

max
qM

(A− qM)qM =⇒ qmM =
A

2
.



I Let us solve the subgames beginning with potential entrant’s
decision nodes

I Suppose that qM was chosen by the monopolist

I Then the entrant maximizes:

max
qE

(A− qE − qM)qE − F .

I The entrant’s best response function is:

BRE (qM) =


0 if (A−qM)2

4 < F ,

{0, (A− qM)/2} if (A−qM)2

4 = F ,

(A− qM)/2 if (A−qM)2

4 > F .

I This simplifies to

BRE (qM) =


0 if qM > A− 2

√
F ,

{0, (A− qM)/2} if qM = A− 2
√
F ,

(A− qM)/2 if qM < A− 2
√
F .
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I Case 1: F > A2/16

I In this case, A/2 > A− 2
√
F

I Therefore by producing qM = A/2, the entrant stays out

I The monopolist’s best response is to choose q∗M = A/2
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q∗M = A/2, q∗E (qM) =


0 if qM > A− 2

√
F ,

0 if qM = A− 2
√
F ,

(A− qM)/2 if qM < A− 2
√
F .

q∗M = A/2, q∗E (qM) =


0 if qM > A− 2

√
F ,

(A− qM)/2 if qM = A− 2
√
F ,

(A− qM)/2 if qM < A− 2
√
F .



I Both lead to the same equilibrium outcome which is for the
monopolist to choose qM = A/2 and for the entrant to choose
qE = 0

I If the fixed cost is too high for entry, then even when the
monopolist chooses the monopolist quantity, the entrant still
wants to stay out



I Case 2: F < A2/16

I The best response of the entrant was given by:

BRE (qM) =


0 if qM > A− 2

√
F ,

{0, (A− qM)/2} if qM = A− 2
√
F ,

A−qM
2 if qM < A− 2

√
F .

I For simplicity we will look for equilibria in which the entrant
chooses (A− qM)/2 if qM = A− 2

√
F
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I This case holds when A is sufficiently large
I When the market is large relative to the fixed costs of entry, it

is not worthwhile for the firm to produce a large amount to
keep the entrant out

I Note that the equilibrium outcome is given by:

q∗M = A/2, q∗E = A/4.

I Thus, the equilibrium outcome is exactly the same as in the
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I The profits of the two firms are given by:
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I In this case, the market is too small relative to the fixed cost
so that it is relatively less costly to overproduce to attempt to
deter entry

I The equilibrium outcome is:

q∗M = A− 2
√
F , q∗E = 0.

I In this case, the monopolist is indeed a monopolist but must
overproduce beyond the monopoly quantity qmM

I As a result, the profits are given by:

πM = 2A
√
F − 4F , πE = 0.
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