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I We use the Stackelberg model analyzed earlier to study entry
deterrence in oligopolistic markets.

I Analyze the following game

1. Monopolist chooses qM ∈ [0,A].
2. Potential entrant decides whether to enter or not. Fixed cost

of entering is given by F > 0. If the entrant does not enter,
qE = 0.

3. If potential entrant enters, she chooses qE ∈ [0,A].
4. The price P is determined according to the inverse demand

function P = A− qM − qE and firms receive their payoffs,
where there are no other costs to production than the one just
mentioned above.
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If the monopolist faced no entrant, then he would solve the
following maximization problem:

max
qM

(A− qM)qM =⇒ qmM =
A

2
.



I Let us solve the subgames beginning with potential entrant’s
decision nodes

I Suppose that qM was chosen by the monopolist

I Then the entrant maximizes:

max
qE

(A− qE − qM)qE − F .

I The entrant’s best response function is:

BRE (qM) =


0 if (A−qM)2

4 < F ,

{0, (A− qM)/2} if (A−qM)2

4 = F ,

(A− qM)/2 if (A−qM)2

4 > F .

I This simplifies to

BRE (qM) =


0 if qM > A− 2

√
F ,

{0, (A− qM)/2} if qM = A− 2
√
F ,

(A− qM)/2 if qM < A− 2
√
F .
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I Case 1: F > A2/16

I In this case, A/2 > A− 2
√
F

I Therefore by producing qM = A/2, the entrant stays out

I The monopolist’s best response is to choose q∗M = A/2
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Two SPNE:

q∗M = A/2, q∗E (qM) =


0 if qM > A− 2

√
F ,

0 if qM = A− 2
√
F ,

(A− qM)/2 if qM < A− 2
√
F .

q∗M = A/2, q∗E (qM) =
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I Both lead to the same equilibrium outcome which is for the
monopolist to choose qM = A/2 and for the entrant to choose
qE = 0

I If the fixed cost is too high for entry, then even when the
monopolist chooses the monopolist quantity, the entrant still
wants to stay out



I Case 2: F < A2/16

I The best response of the entrant was given by:

BRE (qM) =


0 if qM > A− 2

√
F ,

{0, (A− qM)/2} if qM = A− 2
√
F ,

A−qM
2 if qM < A− 2

√
F .

I For simplicity we will look for equilibria in which the entrant
chooses (A− qM)/2 if qM = A− 2

√
F
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I As a result,

q∗E (qM) =

{
0 if qM > A− 2

√
F ,

A−qM
2 if qM ≤ A− 2

√
F .

I The monopolist must maximize the following utility function
given that the entrant chooses according to q∗E :

max
qM≥0

uM(qM , q
∗
E (·)) = max

qM≥0

{
(A− qM)qM if qM > A− 2

√
F

qM(A−qM)
2 if qM ≤ A− 2

√
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I Case 2a: A2/8 > 2A
√
F − 4F

I A/2 < A− 2
√
F

I The best response for the monopolist is to set q∗M = A/2.
I Here the SPNE is given by:

q∗M = A/2, q∗E (qM) =

{
0 if qM > A− 2

√
F ,

A−qM
2 if qM ≤ A− 2

√
F .

I This case holds when A is sufficiently large
I When the market is large relative to the fixed costs of entry, it

is not worthwhile for the firm to produce a large amount to
keep the entrant out

I Note that the equilibrium outcome is given by:

q∗M = A/2, q∗E = A/4.

I Thus, the equilibrium outcome is exactly the same as in the
Stackelberg competition game

I The profits of the two firms are given by:

πM =
A2

8
, πE =

A2

16
− F .
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I Case 2b: A2/8 < 2A
√
F − 4F

I In this case, the best response for the monopolist is to set
q∗M = A− 2

√
F

I Here the SPNE is given by:

q∗M = A− 2
√
F , q∗E (qM) =

{
0 if qM > A− 2

√
F ,

A−qM
2 if qM ≤ A− 2

√
F .

I In this case, the market is too small relative to the fixed cost
so that it is relatively less costly to overproduce to attempt to
deter entry

I The equilibrium outcome is:

q∗M = A− 2
√
F , q∗E = 0.

I In this case, the monopolist is indeed a monopolist but must
overproduce beyond the monopoly quantity qmM

I As a result, the profits are given by:

πM = 2A
√
F − 4F , πE = 0.
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I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times



I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times



I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times



I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times



I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times



1. In period 1, players simultaneously play the game G1.

2. Players observe the actions chosen by the players in period 1.
Then in period 2, players simultaneously play the game G1.

3. This game proceeds until time T .
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Consider the following two-player game:

I Each player i = 1, 2 simultaneously decide whether to play
ei = 1 (work) or ei = 0 (shirk)

I Working incurs a cost of 1 however increases the utility of the
other player −i by 2

I Thus,
ui (ei , e−i ) = 2e−i − ei .
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Prisoner’s Dilemma (Game G )

e2 = 1 e2 = 0

e1 = 1 1, 1 −1, 2

e1 = 0 2,−1 0, 0



I What happens when T = 1

I NE: Players 1 and 2 will both choose (e1 = 0, e1 = 0)
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Imagine players are engaged in a long run relationship that lasts
more than just playing the game once: (G , 2)

1. Both players play the simultaneous move game G .

2. Both players observe the actions chosen by the two players.
Then they play G again.

3. Then payoffs are realized as the discounted sum of the utilities
of the actions in each period with discount factor δ ∈ (0, 1].
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Suppose that the two players chose (e1 = 1, e2 = 1) in the first
period
In the second period, they chose (e1 = 0, e2 = 1)

u1 = 1 + δ · 2
u2 = 1 + δ · (−1).
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I We will solve for the set of pure SPNE of this game.

I Player 1 has 5 information sets in total

I A pure strategy for player 1 must specify what he does in each
of these information sets

I Player 1 has a total of 32 (25) pure strategies

I Similarly, player 2 has a total of 32 pure strategies
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I There are 5 subgames

I Start at the end of the game (i.e., T = 2)

I The first subgame that we will analyze is the one that the
players encounter after having play (e11 = 0, e12 = 0) in T = 1:
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The Nash equilibria can be seen by writing out the normal form of
the game.

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 δ, δ −δ, 2δ
e1 = 0 2δ,−δ 0, 0



I This game has a unique Nash equilibrium in which the players
play (e21 = 0, e22 = 0)

I Therefore after having observed (e11 = 0, e12 = 0) in the first
period, both players will play (e21 = 0, e22 = 0) in period 2
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Consider the subgame following a play of (e11 = 1, e12 = 0) in the
first period. The extensive form of this subgame is given by:
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The normal form of this subgame can be seen in the Table

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 −1 + δ, 2 + δ −1− δ, 2 + 2δ

e1 = 0 −1 + 2δ, 2− δ −1, 2



I (e1 = 0, e2 = 0) is the unique Nash equilibrium

I In any SPNE, (e21 = 0, e22 = 0) must be played after observing
(e11 = 1, e12 = 0)
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I We can go through the remaining smaller subgames after the
observation of (e11 = 1, e12 = 0) and after the observation of
(e11 = 1, e12 = 1)

I We will reach the same conclusion in each of these scenarios:
that (e21 = 0, e22 = 0) must be played in each of these
subgames

I Regardless of the observed action, (0, 0) is played in period 2

I Why is this the case?

I The idea is that payoffs that have accrued in period 1 are
essentially sunk, and have no influence on incentives in period
2
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To see this consider the normal form representation in the subgame
after the observation of (e11 = 1, e12 = 0)

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 −1 + δ, 2 + δ −1− 1δ, 2 + 2δ

e1 = 0 −1 + 2δ, 2− δ −1, 2



I We can subtract off the payoff that player 1 received in period
1 and divide through player 1’s payoffs by δ to obtain the
following payoff matrix

I We can do the same thing for player 2’s payoffs and get the
payoff matrix
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I We’ve just performed affine transformations of each person’s
utility functions

I This payoff matrix is equivalent from a strategic perspective
from the original normal

I Thus the set of Nash equilibria will remain unchanged after
these transformations

I This normal form is just the original prisoner’s dilemma

I This will be true no matter the action profile played in period
1
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I So what have we learned?

I Basically after any history, the strategic normal form is
essentially the same as the original prisoner’s dilemma

I Both players play (e21 = 0, e22 = 0) after any information set in
the last period
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I Now let us see what must be played in the first period by the
two players

I Both players anticipate that (e21 = 0, e22 = 0) will be played
after any chosen action profile in the first period

I We can simplify the extensive form game to the following:
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If we draw the normal form of this game, then we get:

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 1, 1 −1, 2

e1 = 0 2,−1 0, 0

The unique Nash equilibrium of the above normal form game is
(e11 = 0, e12 = 0)



Therefore the unique SPNE is:
 e11 = 0

e21 = 0
e21 = 0
e21 = 0
e21 = 0

 ,

 e12 = 0

e22 = 0
e22 = 0
e22 = 0
e22 = 0




In other words both players always shirk



I Here the unique SPNE requires all players to play ei = 0 at all
periods and all information sets

I Thus, the equilibrium outcome is simply the repetition of the
unique NE of the stage game

I This holds more generally when the stage game has a unique
NE

I Whenever the stage game has a unique NE, then the only
SPNE of a finite horizon repeated game with that stage
game is the repetition of the stage game NE
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Theorem
Suppose that the stage game G1 has exactly one NE,
(a∗1, a

∗
2, . . . , a

∗
n). Then for any δ ∈ (0, 1] and any T , the T -times

repeated game has a unique SPNE in which all players i play a∗i at
all information sets.



I The basic idea of the proof for this proposition is exactly the
same that we saw in the repeated prisoner’s dilemma

I All past payoffs are sunk

I In the last period, the incentives of all players are exactly the
same as if the game were being played once

I Thus all players must play the stage game Nash equilibrium
action regardless of the history of play up to that point

I But then we can induct

I Knowing that the stage game Nash equilibrium is going to be
played tomorrow, at any information set, we can ignore the
past payoffs

I We concentrate just on the payoffs in the future. Thus in
period T − 1, player i simply wants to maximize:

max
ai∈Ai

δT−2ui (ai , a
T−1
−i ) + δT−1ui (a

∗).
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I What player i plays today has no consequences for what
happens in period T since we saw that all players will play a∗

no matter what happens in period T − 1

I So, the maximization problem above is the same as:

max
ai∈Ai

ui (ai , a
T−1
−i ).

I Thus again, for this to be a Nash equilibrium, we need
aT−11 = a∗1, . . . , a

T−1
n = a∗n.

I Following exactly this induction, we can conclude that every
player must play a∗i at all times and all histories
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