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» One of the features of finitely repeated games was that if the
stage game had a unique Nash equilibrium, then the only
subgame perfect Nash equilibrium was the repetition of that
unique stage game Nash equilibrium

» This happened because there was a last period from which we
could induct backwards (and there was a domino effect!)

» When the game is instead infinitely repeated, this argument
no longer applies since there is no such thing as a last period
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Lets first define what an infinitely repeated game is

We start with a stage game whose utilities are given by
up, u2,...,Un

Each player / has an action set A;

In each period t =0,1,2,..., players simultaneously choose
an action a; € A; and the chosen action profile (a1, az, ..., an)
is observed by all players

Then play moves to period t + 1 and the game continues in
the same manner.
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It is impossible to draw the extensive form of this infinitely
repeated game

Each information set of each player i associated with a finitely
repeated game corresponded to a history of action profiles
chosen in the past

We can represent each information set of player / by a history:

ho = ((Z)),h1 = (a0 = (a(l),...,ag)),...,ht = (aO,al,...,at_l)

We denote the set of all histories at time t as H?
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For example, if the stage game is the prisoner’s dilemma, at
period 1, there are 4 possible histories:

{(G1, @), (G, Dy), (D1, Gp), (D1, Dy)} = HY.

For time t, H* consists of 4! possible histories

This means that there is a one-to-one mapping between all
possible histories and the information sets if we actually wrote
out the whole extensive form game tree



For example, if the stage game is the prisoner’s dilemma, at
period 1, there are 4 possible histories:

{(G1, @), (G, Dy), (D1, Gp), (D1, Dy)} = HY.

For time t, H* consists of 4! possible histories

This means that there is a one-to-one mapping between all
possible histories and the information sets if we actually wrote
out the whole extensive form game tree

As a result, we can think of each ht € H' as representing a
particular information set for each player i in each time t
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What is a strategy in an infinitely repeated game?

It is simply a prescription of what player i would do at every
information set or history

Therefore, it is a function that describes:

Si: U Ht — A,‘.
t>0

Intuitively, s; describes exactly what player i would do at every
possible history h', where s;(h') describes what player i would
do at history h*
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» For example in the infinitely repeated prisoner's dilemma, the
strategy s;(h*) = C; for all h* and all t is the strategy in
which player i always plays C; regardless of the history

» There can be more complicated strategies such as the
following:

si(ht) = G ift=0orht=(CC,...,C),
’ B D; otherwise.

> The above is called a grim trigger strategy
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» How are payoffs determined in the repeated game?

» Suppose the strategies s1, ..., s, are played which lead to the
infinite sequence of action profiles:

» Then the payoff of player i in this repeated game is given by:

sum?® 40t u;(a").

» Intuitively, the contribution to payoff of time t action profile
at is discounted by 4!



» It may be unreasonable to think about an infinitely repeated
game



» It may be unreasonable to think about an infinitely repeated
game
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» It may be unreasonable to think about an infinitely repeated
game

» However the discount factor instead could be interpreted by
the probability of the game/relationship ending at any point
in time.

» Thus, an infinitely repeated game does not necessarily
represent a scenario in which there are an infinite number of
periods, but rather a relationship which ends in finite time
with probability one, but in which the time at which the
relationship ends is uncertain



P Lets see some examples of how to compute payoffs in the
repeated game



P Lets see some examples of how to compute payoffs in the
repeated game

» Consider first the strategy profile in which s;(h*) = C; for all
i=1,2 and all h'.



P Lets see some examples of how to compute payoffs in the
repeated game

» Consider first the strategy profile in which s;(h*) = C; for all
i=1,2 and all h'.

» In this case, the payoff of player 1 in this repeated game is

given by:
- 1
it -t
— 1-9



Lets see some examples of how to compute payoffs in the
repeated game

Consider first the strategy profile in which s;(h*) = C; for all
i=1,2 and all h'.

In this case, the payoff of player 1 in this repeated game is
given by:

o

=iy

pore 1-96

What about in the grim trigger strategy profile?



Lets see some examples of how to compute payoffs in the
repeated game

Consider first the strategy profile in which s;(h*) = C; for all
i=1,2 and all h'.

In this case, the payoff of player 1 in this repeated game is
given by:

o

=iy

pore 1-96

What about in the grim trigger strategy profile?

In that case, if all players play the grim trigger strategy
profile, the sequence of actions that arise is again (C, C,...)



Lets see some examples of how to compute payoffs in the
repeated game

Consider first the strategy profile in which s;(h*) = C; for all
i=1,2 and all h'.

In this case, the payoff of player 1 in this repeated game is
given by:

o

=iy

pore 1-96

What about in the grim trigger strategy profile?

In that case, if all players play the grim trigger strategy
profile, the sequence of actions that arise is again (C, C,...)

Thus the payoffs of all players is again 1%5.
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to do exactly what the opponent did in the previous period
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How about a more complicated strategy profile?

Suppose that s;(h%) = (Cy, D2) and the strategy profile says
to do exactly what the opponent did in the previous period

Then if both players play these strategies, then the sequence
of actions that arise is:

(Clv D2)a (Dl, C2)a (Cla D2)a oo

Then the payoff to player 1 in this game is given by:

> -1 25 26 —1
2t 2t+1 5 _ _
;a (-1) 49 2= Gt p 1 5
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played at time 7 > t if players indeed play the strategy profile
(si,s_;) after history ht



» Sometimes its more convenient to represent payoffs in terms
of a flow payoff today and a continuation value from
tomorrow on

> At history ht = (a°,...,at™1), if the players play according to
the strategy profile s, then play unfolds in the following
manner:

(&% at, ... at "t &l (s, s_; | hY),atTY(s;, s | hP)...),

where a"(s;,s_; | h*) denotes the action profile that will be
played at time 7 > t if players indeed play the strategy profile
(si,s_;) after history ht

» Then we can define the following payoff to the strategy profile
(si,s_;) conditional on the history h’:

t—1
Ui(si,s_i | h) = Zéfu;(a Zé ui(a"(si,s_i | hY)).
7=0
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Since the payoffs from time 0,1,...,t — 1 do not matter for
the incentives after time t (since these payoffs are sunk), we
delete them and normalize by dividing through by 4°

We then obtain:

Wi(si,s_; | h*) Zaf tui(a (s, s_i | hY))

This is what is called the continuation value of the strategy
profile (s;,s_;) at history ht

The subgame following a time-t history ht essentially is
equivalent to another infinitely repeated game

The value W(s;,s_; | h') represents the value that i accrues
in this subgame, following history h*, when players play
according to ht, viewing payoffs from time t perspective (as if
time t is time 0)



» We can represent the payoff Uj(s;,s_; | h') using continuation
values:

Ui(si,s—i | h) Z(sm, )+ 6 Wi(si,s_; | ht).



» We can represent the payoff Uj(s;,s_; | h') using continuation
values:

Ui(si,s_i | ) Z(Vu, )+ 8 Wi(si,s_i | hY).

» Wi(si,s_; | h') can also be decomposed as follows:

VV,'(S,',S,,' ‘ ht) = u;(s;(ht),s,,-(ht)) + (SVV,'(S,',S,,' | (ht,S,'(ht),S,,'(ht
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» What is a subgame perfect Nash equilibrium in an infinitely
repeated game?

P It is exactly the same idea as in the finitely repeated game or
more generally extensive form games

» That is a strategy profile s = (si,...,s,) is a subgame perfect
game Nash equilibrium if and only if s is a Nash equilibrium in
every subgame of the repeated game.
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This is however still a bit mysterious, so how do we make it a
bit more transparent?

First notice that a particular subgame corresponds to an
infinitely repeated game that starts after a certain history ht

Furthermore the fact that s is a Nash equilibrium after the
history means that after every history ht = (a%,...,a'"!), s;
is a best response against s_; at such a history:

Ui(si,s-i | h*) = max Uj(s},s-; | h").
S

i

Rewriting the above we get that for all s/,
Z(VU, )+ 0t Wi(si,s_; | ht)

> Zam, )+ 6 Wi(sl,s_; | hY)
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Can be simplified slightly by noticing that the payoffs from
time 0 until t — 1 do not matter in the above maximization
problem

Furthermore we can divide all utilities by §¢ to realize that:

Wi(si,s-i | h*) = max W(sj,s_; | h°).
s/

i

The above is still a bit complicated since checking that a
strategy s; is a best response against s_; may be quite difficult
since there are infinitely many pure strategies s/ that player /
could potentially deviate to

However, the following proposition makes the check quite
simple



Theorem (One-stage deviation principle)

s is a subgame perfect Nash equilibrium (SPNE) if and only if for
all times t, each history ht, and each player i,

ui(si(h*), s_i(h")) + OWi(si, s—i | (h*,si(h"),s_i(h")))
= max ui(af,s-i(h)) + OWi(si, s | (h',af. s-i(h")).

i I
i
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time t and following the strategy s/ from time t + 1 on
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having to check that it is optimal against all s/.



» In words the above states that if s is a subgame perfect Nash
equilibrium if and only if at every time t, and every history
and every player i, player i cannot profit by deviating just at
time t and following the strategy s/ from time t + 1 on

» This is extremely useful since we only need to check that s; is
optimal against all possible one-stage deviations rather than
having to check that it is optimal against all s/.

» We will now put this into practice to analyze subgame perfect
Nash equilibria of infinitely repeated games
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Lets go back to the infinitely repeated prisoner's dilemma

What is an example of a subgame perfect Nash equilibrium?

One kind of equilibrium should be straightforward: each player
plays D; and D, always at all information sets

Why is this a SPNE?

We can use the one-stage deviation principle
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» Under this strategy profile s}, s5, for all histories ht,

Wi(st,s; | h) = Wa(s{,s; | h") = 0.

» Thus, for all histories ht,

U,‘(D,'7 D_,') +4 VV,'(Sik,Sék ’ ht) > u,-(C,-, D_,') +4 W,-(sf,sé‘ ‘ ht)

0 0 -1 0

» Thus, (si,s5) is a SPNE



In fact this is not specific to the prisoner’s dilemma as we show
below:

Theorem

Let a* be a Nash equilibrium of the stage game. Then the strategy
profile s* in which all players i play aF at all information sets is a
SPNE for any 6 € [0,1).
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Proof

> We use the one-stage deviation principle again

» We need to show that for every t and all ht, and all /,

ui(sf (h*), s2;(h")) + dWi(s7,sZ; | (A", s7(h"), sZ:(h")))
= max uj(al, s*;(h")) + SWi(s,s*; | (hta aj, s*i(h%)).

/
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> We use the one-stage deviation principle again

» We need to show that for every t and all ht, and all /,

ui(s7(h"), sZ;(h")) + 0Wi(s]', s*; | (hF,s7(h"),s*;(h)))
= max uj(al, s*;(h")) + SWi(s,s*; | (ht aj, s*;(h%))).

; s 9y
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> Note that
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Proof

> We use the one-stage deviation principle again

» We need to show that for every t and all ht, and all /,

ui(s ("), s%;(h")) + 6Wi(s7,s™; | (A, s} (h"),s™;(h")))
= max u,(a,-,s,,-(h )) + 5‘/‘//(51' 7Sfi | (ht,a,,s (ht)))

/
i i

> Note that

Wi(s?,s*; | (h,si(h"),s_i(h")))

= Wi(si,s-i | (h", a, s-i(h"))) = ui(a")
> So we just need to show that

ui(af, a*;) = max u;(a;, a;),
a,-EA;

» This is true by assumption that a* is a Nash equilibrium of the
stage game
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» What other kinds of SPNE are there?

» In finitely repeated games, this was the only SPNE with
prisoner's dilemma since the stage game had a unique Nash
equilibrium

» When the repeated game is infinitely repeated, this is no
longer true
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> Consider for example the grim trigger strategy profile that we
discussed earlier. Each player plays the following strategy:

s*(ht)_ Ci |f ht:(C, C,,C)
| D ifRt#£(C,C,..., Q).

1

» We will show that if § is sufficiently high, so that the players
are sufficiently patient, the strategy profile of grim trigger
strategies is indeed a SPNE

» The equilibrium path of play for this SPNE is for players to
play C in every period
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» How do we show that the above is indeed an SPNE?

» We use the one-stage deviation principle again



» How do we show that the above is indeed an SPNE?

» We use the one-stage deviation principle again

> We need to check the one-stage deviation principle at every
history ht.
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Players are each suppose to play D;

» Thus, we need to check that
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Case 1:

Suppose first that h* # (C, C, ..., C)

P Players are each suppose to play D;

» Thus, we need to check that

U:( i» D_i) + dWi(s™ | (h", D))
ui(Gi, D—i) + 0W,(s™ | (h*, (G, D-y)))

But since ht # (C, C, ..., C),
Wi(s™ | (h*, D)) = Wi(s* | (h*,(Ci, D)) = ui(Di, D).

So the above inequality is satisfied if and only if

ui(Di, D_j) > ui(G;, D_;).

But this is satisfied since D is a Nash equilibrium of the stage
game
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Suppose instead that h* = (C, C,...,C)
Players are both supposed to play C;
Thus, we need to check that

ui(Ci, C_i) + dW;i(s* | (B, C))
> Ui(Dh C,,') + (5VVI(5* | (htv (Di7 C*i)))'

In this case,

Wi(s™ | (h", ) = ui(Gi, C))
=1, W(s" \(ht (Di; C-i))) = ui(D) = 0.

Therefore, the above is satisfied if and only if
l+0>2«<=4§>1/2.

Thus the grim trigger strategy profile s* is a SPNE if and only
if 6 >1/2.



» The above findings that SPNE may involve the repetition of
action profile that is not a stage game NE is not specific to
just the infinitely repeated prisoner’s dilemma as the following
theorem demonstrates.

Theorem (Folk theorem)

Suppose that a* is a Nash equilibrium of the stage game. Suppose
that 4 is an action profile of the Nash equilibrium such that

ur(8) > w1(8%), ..., un(8) > un(a*).

Then there is some 6* < 1 such that whenever 6 > §*, there is a
SPNE in which on the equilibrium path of play, all players play & in
every period.
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Proof

» The proof is essentially the same argument as that in
verification of the grim trigger strategy of the prisoner's
dilemma

» Consider the following strategy profile:

(hy_ [ r=0orh=(33...9)
S; =
at ift>0and ht #£(4,4,...,3).

]

> When is the above a SPNE? Let M; = maxca, ui(a}, 3-)

» We again have two cases
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> Case 1: t > 0and h' #£(4,5,...,38)
» Then all players are supposed to play a* forever

> To check that this is optimal, we need to check that for all &,
ui(@)+Wi(s | (h* %)) = ui(ai, ) +0Wi(s | (h', (a}, a%1)))-

» But since from time t + 1 on, all players a* forever afterwards
regardless of what happens in period t
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Case 1: t >0 and h* # (4,35,...,3)
Then all players are supposed to play a* forever

To check that this is optimal, we need to check that for all &,
ui(@)+Wi(s | (h* %)) = ui(ai, ) +0Wi(s | (h', (a}, a%1)))-

But since from time t + 1 on, all players a* forever afterwards
regardless of what happens in period t

Wis | (A7, a%)) = Wi(s | (A%, (4}, a%;)) = ui(a")
Thus, the above holds if and only if for all af,

u;(a*) > u;(af-, a*_,-).

This satisfied by the assumption that a* is a stage game NE.
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> Case 2: t =0or h*t =(4,5,...,3)
Then all players are supposed to play & in period t
» To check that this is optimal,

v

ui(8) +0W(s | (h',8)) > ui(a},a_;) + OWi(s | (b, (a}, 4-4)))-

> But Wi(s | (h*,8)) = ui(8) and Wi(s | (h%,a},a_;)) = ui(a*)
» Thus the above is satisfied if and only if for all &/,

ui(8) > ui(a},4-;) + dui(a*).
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Case 2: t=0o0r h' =(4,4,...,48)
Then all players are supposed to play & in period t
To check that this is optimal,

ui(8) +0W(s | (h',8)) > ui(a},a_;) + OWi(s | (b, (a}, 4-4)))-

But Wi(s | (A%, 8)) = ui(8) and Wi(s | (h*,a},4_;)) = ui(a®)
Thus the above is satisfied if and only if for all a/,

ui(8) > ui(a},4-;) + dui(a*).

The above is satisfied if

ui(8) > Mi+dui(a*) <06 >

Setting 6* = max?_, (u;(é)—u;g’ssljr(fl)\/h—u,-(é)) concludes the

proof
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» The above have the simple feature that once a deviation
occurs, players punish each other forever by playing the stage
game Nash equilibrium forever after

» There are many other SPNE than those that we have just
discussed

» In fact as § becomes large, the number of SPNE explodes to
infinity
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