Lecture 19: Infinitely Repeated Games

Mauricio Romero

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games

One of the features of **finitely** repeated games was that if the stage game had a **unique** Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium One of the features of **finitely** repeated games was that if the stage game had a **unique** Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium

This happened because there was a last period from which we could induct backwards (and there was a domino effect!) One of the features of **finitely** repeated games was that if the stage game had a **unique** Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium

This happened because there was a last period from which we could induct backwards (and there was a domino effect!)

► When the game is instead **infinitely** repeated, this argument no longer applies since there is no such thing as a last period

Lets first define what an infinitely repeated game is

- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by u_1, u_2, \dots, u_n

- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n
- \triangleright Each player *i* has an action set A_i

- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by u_1, u_2, \dots, u_n
- Each player i has an action set A_i
- ▶ In each period t = 0, 1, 2, ..., players simultaneously choose an action $a_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players

- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by u_1, u_2, \dots, u_n
- Each player i has an action set A_i
- ▶ In each period t = 0, 1, 2, ..., players simultaneously choose an action $a_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players
- ▶ Then play moves to period t + 1 and the game continues in the same manner.

▶ It is impossible to draw the extensive form of this infinitely repeated game

- ▶ It is impossible to draw the extensive form of this infinitely repeated game
- ► Each information set of each player *i* associated with a finitely repeated game corresponded to a history of action profiles chosen in the past

- ▶ It is impossible to draw the extensive form of this infinitely repeated game
- ► Each information set of each player *i* associated with a finitely repeated game corresponded to a history of action profiles chosen in the past
- ▶ We can represent each information set of player *i* by a history:

$$h^0 = (\emptyset), h^1 = (a^0 := (a_1^0, \dots, a_n^0)), \dots, h^t = (a^0, a^1, \dots, a^{t-1})$$

- ► It is impossible to draw the extensive form of this infinitely repeated game
- ► Each information set of each player *i* associated with a finitely repeated game corresponded to a history of action profiles chosen in the past
- ▶ We can represent each information set of player *i* by a history:

$$h^0 = (\emptyset), h^1 = (a^0 := (a_1^0, \dots, a_n^0)), \dots, h^t = (a^0, a^1, \dots, a^{t-1})$$

 \blacktriangleright We denote the set of all histories at time t as H^t

Prisoner's Dilemma

	C_2	D_2
C_1	1, 1	-1, 2
D_1	2, -1	0,0

$$\{(C_1,C_2),(C_1,D_2),(D_1,C_2),(D_1,D_2)\}=H^1.$$

$$\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$$

▶ For time t, H^t consists of 4^t possible histories

$$\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$$

- For time t, H^t consists of 4^t possible histories
- ➤ This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree

$$\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$$

- ▶ For time t, H^t consists of 4^t possible histories
- ➤ This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree
- As a result, we can think of each $h^t \in H^t$ as representing a particular information set for each player i in each time t

▶ What is a strategy in an infinitely repeated game?

- What is a strategy in an infinitely repeated game?
- ▶ It is simply a prescription of what player *i* would do at every information set or history

- What is a strategy in an infinitely repeated game?
- ► It is simply a prescription of what player *i* would do at every information set or history
- ► Therefore, it is a function that describes:

$$s_i:\bigcup_{t\geq 0}H^t\to A_i.$$

- What is a strategy in an infinitely repeated game?
- ▶ It is simply a prescription of what player *i* would do at every information set or history
- Therefore, it is a function that describes:

$$s_i:\bigcup_{t>0}H^t\to A_i.$$

Intuitively, s_i describes exactly what player i would do at every possible history h^t , where $s_i(h^t)$ describes what player i would do at history h^t

For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history

- For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history
- ► There can be more complicated strategies such as the following:

$$s_i(h^t) = \begin{cases} C_i & \text{if } t = 0 \text{ or } h^t = (C, C, \dots, C), \\ D_i & \text{otherwise.} \end{cases}$$

- For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history
- ► There can be more complicated strategies such as the following:

$$s_i(h^t) = \begin{cases} C_i & \text{if } t = 0 \text{ or } h^t = (C, C, \dots, C), \\ D_i & \text{otherwise.} \end{cases}$$

► The above is called a **grim trigger strategy**

▶ How are payoffs determined in the repeated game?

- ▶ How are payoffs determined in the repeated game?
- Suppose the *strategies* s_1, \ldots, s_n are played which lead to the infinite sequence of action profiles:

$$a^0, a^1, \ldots, a^t, a^{t+1}, \ldots$$

- ▶ How are payoffs determined in the repeated game?
- Suppose the *strategies* s_1, \ldots, s_n are played which lead to the infinite sequence of action profiles:

$$a^0, a^1, \ldots, a^t, a^{t+1}, \ldots$$

▶ Then the payoff of player *i* in this repeated game is given by:

$$sum_{t=0}^{\infty}\delta^{t}u_{i}(a^{t}).$$

- ▶ How are payoffs determined in the repeated game?
- Suppose the *strategies* s_1, \ldots, s_n are played which lead to the infinite sequence of action profiles:

$$a^0, a^1, \ldots, a^t, a^{t+1}, \ldots$$

▶ Then the payoff of player *i* in this repeated game is given by:

$$sum_{t=0}^{\infty}\delta^t u_i(a^t).$$

Intuitively, the contribution to payoff of time t action profile a^t is discounted by δ^t

▶ It may be unreasonable to think about an infinitely repeated game

- ▶ It may be unreasonable to think about an infinitely repeated game
- ► However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time.

▶ It may be unreasonable to think about an infinitely repeated game

However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time.

➤ Thus, an infinitely repeated game does not necessarily represent a scenario in which there are an infinite number of periods, but rather a relationship which ends in finite time with probability one, but in which the time at which the relationship ends is uncertain

► Lets see some examples of how to compute payoffs in the repeated game

- ► Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .

- ► Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .
- ► In this case, the payoff of player 1 in this repeated game is given by:

$$\sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$$

- ► Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .
- ▶ In this case, the payoff of player 1 in this repeated game is given by:

$$\sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$$

▶ What about in the grim trigger strategy profile?

- ► Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .
- ► In this case, the payoff of player 1 in this repeated game is given by:

$$\sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$$

- What about in the grim trigger strategy profile?
- ▶ In that case, if all players play the grim trigger strategy profile, the sequence of actions that arise is again (C, C, ...)

- ► Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .
- ► In this case, the payoff of player 1 in this repeated game is given by:

$$\sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$$

- ▶ What about in the grim trigger strategy profile?
- ▶ In that case, if all players play the grim trigger strategy profile, the sequence of actions that arise is again (C, C, ...)
- ► Thus the payoffs of all players is again $\frac{1}{1-\delta}$.

▶ How about a more complicated strategy profile?

- ► How about a more complicated strategy profile?
- Suppose that $s_i(h^0) = (C_1, D_2)$ and the strategy profile says to do exactly what the opponent did in the previous period

- How about a more complicated strategy profile?
- Suppose that $s_i(h^0) = (C_1, D_2)$ and the strategy profile says to do exactly what the opponent did in the previous period
- ► Then if both players play these strategies, then the sequence of actions that arise is:

$$(C_1, D_2), (D_1, C_2), (C_1, D_2), \ldots$$

- How about a more complicated strategy profile?
- Suppose that $s_i(h^0) = (C_1, D_2)$ and the strategy profile says to do exactly what the opponent did in the previous period
- Then if both players play these strategies, then the sequence of actions that arise is:

$$(C_1, D_2), (D_1, C_2), (C_1, D_2), \ldots$$

▶ Then the payoff to player 1 in this game is given by:

$$\sum_{t=0}^{\infty} \delta^{2t}(-1) + \delta^{2t+1} \cdot 2 = \frac{-1}{1-\delta^2} + \frac{2\delta}{1-\delta^2} = \frac{2\delta-1}{1-\delta^2}.$$

Sometimes its more convenient to represent payoffs in terms of a flow payoff today and a continuation value from tomorrow on

- Sometimes its more convenient to represent payoffs in terms of a flow payoff today and a continuation value from tomorrow on
- At history $h^t = (a^0, \dots, a^{t-1})$, if the players play according to the strategy profile s, then play unfolds in the following manner:

$$(a^0, a^1, \ldots, a^{t-1}, a^t(s_i, s_{-i} \mid h^t), a^{t+1}(s_i, s_{-i} \mid h^t) \ldots),$$

where $a^{\tau}(s_i, s_{-i} \mid h^t)$ denotes the action profile that will be played at time $\tau \geq t$ if players indeed play the strategy profile (s_i, s_{-i}) after history h^t

- Sometimes its more convenient to represent payoffs in terms of a flow payoff today and a continuation value from tomorrow on
- At history $h^t = (a^0, \dots, a^{t-1})$, if the players play according to the strategy profile s, then play unfolds in the following manner:

$$(a^0, a^1, \ldots, a^{t-1}, a^t(s_i, s_{-i} \mid h^t), a^{t+1}(s_i, s_{-i} \mid h^t) \ldots),$$

where $a^{\tau}(s_i, s_{-i} \mid h^t)$ denotes the action profile that will be played at time $\tau \geq t$ if players indeed play the strategy profile (s_i, s_{-i}) after history h^t

Then we can define the following payoff to the strategy profile (s_i, s_{-i}) conditional on the history h^t :

$$U_i(s_i, s_{-i} \mid h^t) = \sum_{\tau=0}^{t-1} \delta^{\tau} u_i(a^{\tau}) + \sum_{\tau=t}^{\infty} \delta^{\tau} u_i(a^{\tau}(s_i, s_{-i} \mid h^t)).$$

Since the payoffs from time $0,1,\ldots,t-1$ do not matter for the incentives after time t (since these payoffs are sunk), we delete them and normalize by dividing through by δ^t

- Since the payoffs from time $0,1,\ldots,t-1$ do not matter for the incentives after time t (since these payoffs are sunk), we delete them and normalize by dividing through by δ^t
- We then obtain:

$$W_i(s_i, s_{-i} \mid h^t) := \sum_{\tau=t}^{\infty} \delta^{\tau-t} u_i(a^{\tau}(s_i, s_{-i} \mid h^t))$$

- Since the payoffs from time $0,1,\ldots,t-1$ do not matter for the incentives after time t (since these payoffs are sunk), we delete them and normalize by dividing through by δ^t
- We then obtain:

$$W_i(s_i, s_{-i} \mid h^t) := \sum_{\tau=t}^{\infty} \delta^{\tau-t} u_i(a^{\tau}(s_i, s_{-i} \mid h^t))$$

▶ This is what is called the **continuation value** of the strategy profile (s_i, s_{-i}) at history h^t

- Since the payoffs from time $0,1,\ldots,t-1$ do not matter for the incentives after time t (since these payoffs are sunk), we delete them and normalize by dividing through by δ^t
- We then obtain:

$$W_i(s_i, s_{-i} \mid h^t) := \sum_{\tau=t}^{\infty} \delta^{\tau-t} u_i(a^{\tau}(s_i, s_{-i} \mid h^t))$$

- ► This is what is called the **continuation value** of the strategy profile (s_i, s_{-i}) at history h^t
- ► The subgame following a time-t history h^t essentially is equivalent to another infinitely repeated game

- Since the payoffs from time $0, 1, \ldots, t-1$ do not matter for the incentives after time t (since these payoffs are sunk), we delete them and normalize by dividing through by δ^t
- We then obtain:

$$W_i(s_i, s_{-i} \mid h^t) := \sum_{\tau=t}^{\infty} \delta^{\tau-t} u_i(a^{\tau}(s_i, s_{-i} \mid h^t))$$

- ► This is what is called the **continuation value** of the strategy profile (s_i, s_{-i}) at history h^t
- ► The subgame following a time-t history h^t essentially is equivalent to another infinitely repeated game
- The value $W_i(s_i, s_{-i} | h^t)$ represents the value that i accrues in this subgame, following history h^t , when players play according to h^t , viewing payoffs from time t perspective (as if time t is time t)

We can represent the payoff $U_i(s_i, s_{-i} \mid h^t)$ using continuation values:

$$U_i(s_i, s_{-i} \mid h^t) = \sum_{\tau=0}^{t-1} \delta^{\tau} u_i(a^{\tau}) + \delta^t W_i(s_i, s_{-i} \mid h^t).$$

▶ We can represent the payoff $U_i(s_i, s_{-i} | h^t)$ using continuation values:

$$U_i(s_i, s_{-i} \mid h^t) = \sum_{\tau=0}^{t-1} \delta^{\tau} u_i(a^{\tau}) + \delta^t W_i(s_i, s_{-i} \mid h^t).$$

 $\bigvee W_i(s_i, s_{-i} \mid h^t)$ can also be decomposed as follows:

$$W_i(s_i, s_{-i} \mid h^t) = u_i(s_i(h^t), s_{-i}(h^t)) + \delta W_i(s_i, s_{-i} \mid (h^t, s_i(h^t), s_{-i}(h^t)))$$

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games Subgame Perfect Nash Equilibrium Examples ► What is a subgame perfect Nash equilibrium in an infinitely repeated game?

What is a subgame perfect Nash equilibrium in an infinitely repeated game?

► It is exactly the same idea as in the finitely repeated game or more generally extensive form games

What is a subgame perfect Nash equilibrium in an infinitely repeated game?

It is exactly the same idea as in the finitely repeated game or more generally extensive form games

▶ That is a strategy profile $s = (s_1, ..., s_n)$ is a subgame perfect game Nash equilibrium if and only if s is a Nash equilibrium in every subgame of the repeated game.

► This is however still a bit mysterious, so how do we make it a bit more transparent?

- ► This is however still a bit mysterious, so how do we make it a bit more transparent?
- ► First notice that a particular subgame corresponds to an infinitely repeated game that starts after a certain history h^t

- ► This is however still a bit mysterious, so how do we make it a bit more transparent?
- First notice that a particular subgame corresponds to an infinitely repeated game that starts after a certain history h^t
- Furthermore the fact that s is a Nash equilibrium after the history means that after every history $h^t = (a^0, \dots, a^{t-1}), s_i$ is a best response against s_{-i} at such a history:

$$U_i(s_i, s_{-i} \mid h^t) = \max_{s_i'} U_i(s_i', s_{-i} \mid h^t).$$

- ► This is however still a bit mysterious, so how do we make it a bit more transparent?
- ▶ First notice that a particular subgame corresponds to an infinitely repeated game that starts after a certain history h^t
- Furthermore the fact that s is a Nash equilibrium after the history means that after every history $h^t = (a^0, \dots, a^{t-1})$, s_i is a best response against s_{-i} at such a history:

$$U_i(s_i, s_{-i} \mid h^t) = \max_{s_i'} U_i(s_i', s_{-i} \mid h^t).$$

▶ Rewriting the above we get that for all s'_i ,

$$egin{aligned} &\sum_{ au=0}^{t-1} \delta^ au u_i(a^ au) + \delta^t W_i(s_i, s_{-i} \mid h^t) \ &\geq \sum_{ au=0}^{t-1} \delta^ au u_i(a^ au) + \delta^t W_i(s_i', s_{-i} \mid h^t) \end{aligned}$$

lackbox Can be simplified slightly by noticing that the payoffs from time 0 until t-1 do not matter in the above maximization problem

- ightharpoonup Can be simplified slightly by noticing that the payoffs from time 0 until t-1 do not matter in the above maximization problem
- **F**urthermore we can divide all utilities by δ^t to realize that:

$$W_i(s_i, s_{-i} \mid h^t) = \max_{s'_i} W_i(s'_i, s_{-i} \mid h^t).$$

- ightharpoonup Can be simplified slightly by noticing that the payoffs from time 0 until t-1 do not matter in the above maximization problem
- ▶ Furthermore we can divide all utilities by δ^t to realize that:

$$W_i(s_i, s_{-i} \mid h^t) = \max_{s'_i} W_i(s'_i, s_{-i} \mid h^t).$$

The above is still a bit complicated since checking that a strategy s_i is a best response against s_{-i} may be quite difficult since there are infinitely many pure strategies s_i' that player i could potentially deviate to

- ightharpoonup Can be simplified slightly by noticing that the payoffs from time 0 until t-1 do not matter in the above maximization problem
- ▶ Furthermore we can divide all utilities by δ^t to realize that:

$$W_i(s_i, s_{-i} \mid h^t) = \max_{s'_i} W_i(s'_i, s_{-i} \mid h^t).$$

- ► The above is still a bit complicated since checking that a strategy s_i is a best response against s_{-i} may be quite difficult since there are infinitely many pure strategies s_i' that player i could potentially deviate to
- ► However, the following proposition makes the check quite simple

Theorem (One-stage deviation principle)

s is a subgame perfect Nash equilibrium (SPNE) if and only if for all times t, each history h^t , and each player i,

$$u_{i}(s_{i}(h^{t}), s_{-i}(h^{t})) + \delta W_{i}(s_{i}, s_{-i} \mid (h^{t}, s_{i}(h^{t}), s_{-i}(h^{t})))$$

$$= \max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, s_{-i}(h^{t})) + \delta W_{i}(s_{i}, s_{-i} \mid (h^{t}, a'_{i}, s_{-i}(h^{t}))).$$

In words the above states that if s is a subgame perfect Nash equilibrium if and only if at every time t, and every history and every player i, player i cannot profit by deviating just at time t and following the strategy s_i' from time t+1 on

- In words the above states that if s is a subgame perfect Nash equilibrium if and only if at every time t, and every history and every player i, player i cannot profit by deviating just at time t and following the strategy s_i' from time t+1 on
- ▶ This is extremely useful since we only need to check that s_i is optimal against all possible one-stage deviations rather than having to check that it is optimal against all s'_i .

In words the above states that if s is a subgame perfect Nash equilibrium if and only if at every time t, and every history and every player i, player i cannot profit by deviating just at time t and following the strategy s_i' from time t+1 on

► This is extremely useful since we only need to check that s_i is optimal against all possible one-stage deviations rather than having to check that it is optimal against all s'_i.

► We will now put this into practice to analyze subgame perfect Nash equilibria of infinitely repeated games

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games

Subgame Perfect Nash Equilibrium

Examples

Lets go back to the infinitely repeated prisoner's dilemma

- Lets go back to the infinitely repeated prisoner's dilemma
- ▶ What is an example of a subgame perfect Nash equilibrium?

- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- ightharpoonup One kind of equilibrium should be straightforward: each player plays D_1 and D_2 always at all information sets

- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?

- One kind of equilibrium should be straightforward: each player plays D_1 and D_2 always at all information sets
- Why is this a SPNE?

- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_1 and D_2 always at all information sets
- ► Why is this a SPNE?

▶ We can use the one-stage deviation principle

Prisoner's Dilemma

	C_2	D_2
C_1	1, 1	-1, 2
D_1	2, -1	0,0

▶ Under this strategy profile s_1^*, s_2^* , for all histories h^t ,

$$W_1(s_1^*, s_2^* \mid h^t) = W_2(s_1^*, s_2^* \mid h^t) = 0.$$

▶ Under this strategy profile s_1^*, s_2^* , for all histories h^t ,

$$W_1(s_1^*, s_2^* \mid h^t) = W_2(s_1^*, s_2^* \mid h^t) = 0.$$

ightharpoonup Thus, for all histories h^t ,

$$\underbrace{u_i(D_i, D_{-i})}_{0} + \delta \underbrace{W_i(s_1^*, s_2^* \mid h^t)}_{0} > \underbrace{u_i(C_i, D_{-i})}_{-1} + \delta \underbrace{W_i(s_1^*, s_2^* \mid h^t)}_{0}$$

▶ Under this strategy profile s_1^*, s_2^* , for all histories h^t ,

$$W_1(s_1^*, s_2^* \mid h^t) = W_2(s_1^*, s_2^* \mid h^t) = 0.$$

ightharpoonup Thus, for all histories h^t ,

$$\underbrace{u_i(D_i, D_{-i})}_{0} + \delta \underbrace{W_i(s_1^*, s_2^* \mid h^t)}_{0} > \underbrace{u_i(C_i, D_{-i})}_{-1} + \delta \underbrace{W_i(s_1^*, s_2^* \mid h^t)}_{0}$$

► Thus, (s_1^*, s_2^*) is a SPNE

In fact this is not specific to the prisoner's dilemma as we show below:

Theorem

Let a^* be a Nash equilibrium of the stage game. Then the strategy profile s^* in which all players i play a_i^* at all information sets is a SPNE for any $\delta \in [0,1)$.

▶ We use the one-stage deviation principle again

- ▶ We use the one-stage deviation principle again
- ▶ We need to show that for every t and all h^t , and all i,

$$u_{i}(s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})))$$

$$= \max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, a'_{i}, s_{-i}^{*}(h^{t}))).$$

- ▶ We use the one-stage deviation principle again
- ▶ We need to show that for every t and all h^t , and all i,

$$u_{i}(s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})))$$

$$= \max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, a'_{i}, s_{-i}^{*}(h^{t}))).$$

Note that

$$W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}(h^{t}), s_{-i}(h^{t})))$$

= $W_{i}(s_{i}, s_{-i} \mid (h^{t}, a'_{i}, s_{-i}(h^{t}))) = u_{i}(a^{*})$

- ▶ We use the one-stage deviation principle again
- ▶ We need to show that for every t and all h^t , and all i,

$$u_{i}(s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})))$$

$$= \max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, a'_{i}, s_{-i}^{*}(h^{t}))).$$

Note that

$$W_i(s_i^*, s_{-i}^* \mid (h^t, s_i(h^t), s_{-i}(h^t)))$$

= $W_i(s_i, s_{-i} \mid (h^t, a_i', s_{-i}(h^t))) = u_i(a^*)$

► So we just need to show that

$$u_i(a_i^*, a_{-i}^*) = \max_{a_i' \in A_i} u_i(a_i', a_{-i}^*),$$

- ▶ We use the one-stage deviation principle again
- ▶ We need to show that for every t and all h^t , and all i,

$$u_{i}(s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}^{*}(h^{t}), s_{-i}^{*}(h^{t})))$$

$$= \max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, s_{-i}^{*}(h^{t})) + \delta W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, a'_{i}, s_{-i}^{*}(h^{t}))).$$

Note that

$$W_{i}(s_{i}^{*}, s_{-i}^{*} \mid (h^{t}, s_{i}(h^{t}), s_{-i}(h^{t})))$$

= $W_{i}(s_{i}, s_{-i} \mid (h^{t}, a'_{i}, s_{-i}(h^{t}))) = u_{i}(a^{*})$

So we just need to show that

$$u_i(a_i^*, a_{-i}^*) = \max_{a_i' \in A_i} u_i(a_i', a_{-i}^*),$$

► This is true by assumption that *a** is a Nash equilibrium of the stage game

▶ What other kinds of SPNE are there?

▶ What other kinds of SPNE are there?

▶ In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium

What other kinds of SPNE are there?

▶ In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium

► When the repeated game is infinitely repeated, this is no longer true

► Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$s_i^*(h^t) = \begin{cases} C_i & \text{if } h^t = (C, C, \dots, C) \\ D_i & \text{if } h^t \neq (C, C, \dots, C). \end{cases}$$

Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$s_i^*(h^t) = \begin{cases} C_i & \text{if } h^t = (C, C, \dots, C) \\ D_i & \text{if } h^t \neq (C, C, \dots, C). \end{cases}$$

ightharpoonup We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE

Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$s_i^*(h^t) = \begin{cases} C_i & \text{if } h^t = (C, C, \dots, C) \\ D_i & \text{if } h^t \neq (C, C, \dots, C). \end{cases}$$

- We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE
- ► The *equilibrium path of play* for this SPNE is for players to play *C* in every period

▶ How do we show that the above is indeed an SPNE?

▶ How do we show that the above is indeed an SPNE?

▶ We use the one-stage deviation principle again

▶ How do we show that the above is indeed an SPNE?

▶ We use the one-stage deviation principle again

We need to check the one-stage deviation principle at every history h^t.

▶ Suppose first that $h^t \neq (C, C, ..., C)$

- ▶ Suppose first that $h^t \neq (C, C, ..., C)$
- ightharpoonup Players are each suppose to play D_i

- ▶ Suppose first that $h^t \neq (C, C, ..., C)$
- ▶ Players are each suppose to play *Di*
- ► Thus, we need to check that

$$u_{i}(D_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, D))$$

$$\geq u_{i}(C_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, (C_{i}, D_{-i})))$$

- ▶ Suppose first that $h^t \neq (C, C, ..., C)$
- Players are each suppose to play D_i
- ▶ Thus, we need to check that

$$u_{i}(D_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, D))$$

$$\geq u_{i}(C_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, (C_{i}, D_{-i})))$$

▶ But since $h^t \neq (C, C, ..., C)$, $W_i(s^* \mid (h^t, D)) = W_i(s^* \mid (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$.

- ▶ Suppose first that $h^t \neq (C, C, ..., C)$
- Players are each suppose to play D_i
- ► Thus, we need to check that

$$u_{i}(D_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, D))$$

$$\geq u_{i}(C_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, (C_{i}, D_{-i})))$$

- ▶ But since $h^t \neq (C, C, ..., C)$, $W_i(s^* \mid (h^t, D)) = W_i(s^* \mid (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$.
- So the above inequality is satisfied if and only if

$$u_i(D_i, D_{-i}) \geq u_i(C_i, D_{-i}).$$

- ▶ Suppose first that $h^t \neq (C, C, ..., C)$
- Players are each suppose to play D_i
- Thus, we need to check that

$$u_{i}(D_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, D))$$

$$\geq u_{i}(C_{i}, D_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, (C_{i}, D_{-i})))$$

- ▶ But since $h^t \neq (C, C, ..., C)$, $W_i(s^* \mid (h^t, D)) = W_i(s^* \mid (h^t, C_i, D_{-i})) = u_i(D_i, D_{-i})$.
- So the above inequality is satisfied if and only if

$$u_i(D_i, D_{-i}) \geq u_i(C_i, D_{-i}).$$

But this is satisfied since D is a Nash equilibrium of the stage game

▶ Suppose instead that $h^t = (C, C, ..., C)$

- ▶ Suppose instead that $h^t = (C, C, ..., C)$
- ▶ Players are both supposed to play *C_i*

- ▶ Suppose instead that $h^t = (C, C, ..., C)$
- ▶ Players are both supposed to play *C_i*
- Thus, we need to check that

$$u_{i}(C_{i}, C_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, C))$$

$$\geq u_{i}(D_{i}, C_{-i}) + \delta W_{i}(s^{*} \mid (h^{t}, (D_{i}, C_{-i}))).$$

- ▶ Suppose instead that $h^t = (C, C, ..., C)$
- Players are both supposed to play C_i
- Thus, we need to check that

$$u_i(C_i, C_{-i}) + \delta W_i(s^* \mid (h^t, C))$$

 $\geq u_i(D_i, C_{-i}) + \delta W_i(s^* \mid (h^t, (D_i, C_{-i}))).$

In this case,

$$W_i(s^* \mid (h^t, C)) = u_i(C_i, C_{-i})$$

= 1, $W_i(s^* \mid (h^t, (D_i, C_{-i}))) = u_i(D) = 0$.

- ▶ Suppose instead that $h^t = (C, C, ..., C)$
- Players are both supposed to play C_i
- Thus, we need to check that

$$u_i(C_i, C_{-i}) + \delta W_i(s^* \mid (h^t, C))$$

 $\geq u_i(D_i, C_{-i}) + \delta W_i(s^* \mid (h^t, (D_i, C_{-i}))).$

In this case,

$$W_i(s^* \mid (h^t, C)) = u_i(C_i, C_{-i})$$

= 1, $W_i(s^* \mid (h^t, (D_i, C_{-i}))) = u_i(D) = 0.$

▶ Therefore, the above is satisfied if and only if

$$1 + \delta \ge 2 \iff \delta \ge 1/2$$
.

- ▶ Suppose instead that $h^t = (C, C, ..., C)$
- Players are both supposed to play C_i
- ▶ Thus, we need to check that

$$u_i(C_i, C_{-i}) + \delta W_i(s^* \mid (h^t, C))$$

 $\geq u_i(D_i, C_{-i}) + \delta W_i(s^* \mid (h^t, (D_i, C_{-i}))).$

In this case,

$$W_i(s^* \mid (h^t, C)) = u_i(C_i, C_{-i})$$

= 1, $W_i(s^* \mid (h^t, (D_i, C_{-i}))) = u_i(D) = 0.$

Therefore, the above is satisfied if and only if

$$1 + \delta \ge 2 \iff \delta \ge 1/2$$
.

▶ Thus the grim trigger strategy profile s^* is a SPNE if and only if $\delta > 1/2$.

▶ The above findings that SPNE may involve the repetition of action profile that is not a stage game NE is not specific to just the infinitely repeated prisoner's dilemma as the following theorem demonstrates.

Theorem (Folk theorem)

Suppose that a^* is a Nash equilibrium of the stage game. Suppose that \hat{a} is an action profile of the Nash equilibrium such that

$$u_1(\hat{a}) > u_1(a^*), \ldots, u_n(\hat{a}) > u_n(a^*).$$

Then there is some $\delta^* < 1$ such that whenever $\delta > \delta^*$, there is a SPNE in which on the equilibrium path of play, all players play \hat{a} in every period.

► The proof is essentially the same argument as that in verification of the grim trigger strategy of the prisoner's dilemma

- ► The proof is essentially the same argument as that in verification of the grim trigger strategy of the prisoner's dilemma
- Consider the following strategy profile:

$$s_i(h^t) = \begin{cases} \hat{a}_i & \text{if } t = 0 \text{ or } h^t = (\hat{a}, \hat{a}, \dots, \hat{a}) \\ a_i^* & \text{if } t > 0 \text{ and } h^t \neq (\hat{a}, \hat{a}, \dots, \hat{a}). \end{cases}$$

- The proof is essentially the same argument as that in verification of the grim trigger strategy of the prisoner's dilemma
- Consider the following strategy profile:

$$s_i(h^t) = \begin{cases} \hat{a}_i & \text{if } t = 0 \text{ or } h^t = (\hat{a}, \hat{a}, \dots, \hat{a}) \\ a_i^* & \text{if } t > 0 \text{ and } h^t \neq (\hat{a}, \hat{a}, \dots, \hat{a}). \end{cases}$$

▶ When is the above a SPNE? Let $M_i = \max_{a'_i \in A_i} u_i(a'_i, \hat{a}_{-i})$

- ► The proof is essentially the same argument as that in verification of the grim trigger strategy of the prisoner's dilemma
- Consider the following strategy profile:

$$s_i(h^t) = \begin{cases} \hat{a}_i & \text{if } t = 0 \text{ or } h^t = (\hat{a}, \hat{a}, \dots, \hat{a}) \\ a_i^* & \text{if } t > 0 \text{ and } h^t \neq (\hat{a}, \hat{a}, \dots, \hat{a}). \end{cases}$$

- ▶ When is the above a SPNE? Let $M_i = \max_{a'_i \in A_i} u_i(a'_i, \hat{a}_{-i})$
- ► We again have two cases

▶ Case 1: t > 0 and $h^t \neq (\hat{a}, \hat{a}, \dots, \hat{a})$

- ▶ **Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play *a** forever

- **► Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play *a** forever
- ▶ To check that this is optimal, we need to check that for all a'_{i} ,

$$u_i(a^*) + \delta W_i(s \mid (h^t, a^*)) \geq u_i(a_i', a_{-i}^*) + \delta W_i(s \mid (h^t, (a_i', a_{-i}^*))).$$

- **► Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play *a** forever
- ► To check that this is optimal, we need to check that for all a_i' , $u_i(a^*) + \delta W_i(s \mid (h^t, a^*)) \ge u_i(a_i', a_{-i}^*) + \delta W_i(s \mid (h^t, (a_i', a_{-i}^*))).$
- lacktriangleright But since from time t+1 on, all players a^* forever afterwards regardless of what happens in period t

- **► Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play *a** forever
- ► To check that this is optimal, we need to check that for all a_i' , $u_i(a^*) + \delta W_i(s \mid (h^t, a^*)) \ge u_i(a_i', a_{-i}^*) + \delta W_i(s \mid (h^t, (a_i', a_{-i}^*))).$

- lacktriangleright But since from time t+1 on, all players a^* forever afterwards regardless of what happens in period t
- $W_i(s \mid (h^t, a^*)) = W_i(s \mid (h^t, (a_i', a_{-i}^*)) = u_i(a^*)$

- **► Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play a^* forever
- ▶ To check that this is optimal, we need to check that for all a'_{i} ,

$$u_i(a^*) + \delta W_i(s \mid (h^t, a^*)) \geq u_i(a_i', a_{-i}^*) + \delta W_i(s \mid (h^t, (a_i', a_{-i}^*))).$$

- ▶ But since from time t + 1 on, all players a^* forever afterwards regardless of what happens in period t
- $W_i(s \mid (h^t, a^*)) = W_i(s \mid (h^t, (a'_i, a^*_{-i})) = u_i(a^*)$
- ▶ Thus, the above holds if and only if for all a'_i ,

$$u_i(a^*) \geq u_i(a'_i, a^*_{-i}).$$

- **► Case 1:** t > 0 and $h^t \neq (\hat{a}, \hat{a}, ..., \hat{a})$
- ▶ Then all players are supposed to play a^* forever
- ▶ To check that this is optimal, we need to check that for all a'_{i} ,

$$u_i(a^*) + \delta W_i(s \mid (h^t, a^*)) \ge u_i(a_i', a_{-i}^*) + \delta W_i(s \mid (h^t, (a_i', a_{-i}^*))).$$

- ▶ But since from time t+1 on, all players a^* forever afterwards regardless of what happens in period t
- $W_i(s \mid (h^t, a^*)) = W_i(s \mid (h^t, (a'_i, a^*_{-i})) = u_i(a^*)$
- ▶ Thus, the above holds if and only if for all a'_i ,

$$u_i(a^*) \geq u_i(a'_i, a^*_{-i}).$$

▶ This satisfied by the assumption that a^* is a stage game NE.

Case 2: t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- ▶ Then all players are supposed to play \hat{a} in period t

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- ▶ Then all players are supposed to play \hat{a} in period t
- ► To check that this is optimal,

$$u_i(\hat{a}) + \delta W_i(s \mid (h^t, \hat{a})) \geq u_i(a_i', \hat{a}_{-i}) + \delta W_i(s \mid (h^t, (a_i', \hat{a}_{-i}))).$$

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- ▶ Then all players are supposed to play \hat{a} in period t
- To check that this is optimal,

$$u_i(\hat{a}) + \delta W_i(s \mid (h^t, \hat{a})) \ge u_i(a_i', \hat{a}_{-i}) + \delta W_i(s \mid (h^t, (a_i', \hat{a}_{-i}))).$$

▶ But $W_i(s \mid (h^t, \hat{a})) = u_i(\hat{a})$ and $W_i(s \mid (h^t, a_i', \hat{a}_{-i})) = u_i(a^*)$

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- ▶ Then all players are supposed to play \hat{a} in period t
- To check that this is optimal,

$$u_i(\hat{a}) + \delta W_i(s \mid (h^t, \hat{a})) \geq u_i(a_i', \hat{a}_{-i}) + \delta W_i(s \mid (h^t, (a_i', \hat{a}_{-i}))).$$

- ▶ But $W_i(s \mid (h^t, \hat{a})) = u_i(\hat{a})$ and $W_i(s \mid (h^t, a'_i, \hat{a}_{-i})) = u_i(a^*)$
- Thus the above is satisfied if and only if for all a_i

$$u_i(\hat{a}) \geq u_i(a'_i, \hat{a}_{-i}) + \delta u_i(a^*).$$

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- Then all players are supposed to play â in period t
- To check that this is optimal,

$$u_i(\hat{a}) + \delta W_i(s \mid (h^t, \hat{a})) \geq u_i(a_i', \hat{a}_{-i}) + \delta W_i(s \mid (h^t, (a_i', \hat{a}_{-i}))).$$

- ▶ But $W_i(s \mid (h^t, \hat{a})) = u_i(\hat{a})$ and $W_i(s \mid (h^t, a'_i, \hat{a}_{-i})) = u_i(a^*)$
- Thus the above is satisfied if and only if for all a_i

$$u_i(\hat{a}) \geq u_i(a'_i, \hat{a}_{-i}) + \delta u_i(a^*).$$

The above is satisfied if

$$u_i(\hat{a}) \geq M_i + \delta u_i(a^*) \Longleftrightarrow \delta \geq \frac{M_i - u_i(\hat{a})}{(u_i(\hat{a}) - u_i(a^*)) + (M_i - u_i(\hat{a}))}.$$

- **Case 2:** t = 0 or $h^t = (\hat{a}, \hat{a}, \dots, \hat{a})$
- Then all players are supposed to play â in period t
- ► To check that this is optimal,

$$u_i(\hat{a}) + \delta W_i(s \mid (h^t, \hat{a})) \geq u_i(a_i', \hat{a}_{-i}) + \delta W_i(s \mid (h^t, (a_i', \hat{a}_{-i}))).$$

- ▶ But $W_i(s \mid (h^t, \hat{a})) = u_i(\hat{a})$ and $W_i(s \mid (h^t, a_i', \hat{a}_{-i})) = u_i(a^*)$
- ▶ Thus the above is satisfied if and only if for all a'_i ,

$$u_i(\hat{a}) \geq u_i(a'_i, \hat{a}_{-i}) + \delta u_i(a^*).$$

► The above is satisfied if

$$u_i(\hat{a}) \geq M_i + \delta u_i(a^*) \iff \delta \geq \frac{M_i - u_i(\hat{a})}{(u_i(\hat{a}) - u_i(a^*)) + (M_i - u_i(\hat{a}))}.$$

Setting $\delta^* = \max_{i=1}^n \frac{M_i - u_i(\hat{a})}{(u_i(\hat{a}) - u_i(a^*)) + (M_i - u_i(\hat{a}))}$ concludes the proof

► The above have the simple feature that once a deviation occurs, players punish each other forever by playing the stage game Nash equilibrium forever after

► The above have the simple feature that once a deviation occurs, players punish each other forever by playing the stage game Nash equilibrium forever after

► There are many other SPNE than those that we have just discussed

► The above have the simple feature that once a deviation occurs, players punish each other forever by playing the stage game Nash equilibrium forever after

There are many other SPNE than those that we have just discussed

 \blacktriangleright In fact as δ becomes large, the number of SPNE explodes to infinity