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» Indifference curves must be tangent (formalize this later)
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Using calculus

Essentially in this exercise we are doing the following:

» y[\r;;?;(B o) ua(x?, y?) such that
B B B*  B*
up(x”,y") > ug = up(x" ,y"")
xB+xA < Wxs



Theorem

Consider an Edgeworth Box economy and suppose that all
consumers have strictly monotone utility functions. Then a feasible
allocation (x**,y**,xB*  yB*) is Pareto efficient if and only if it
solves

A A
(XA,y’r*r)]i):B,yB)uA(X ,y") such that

B* B*
)



» Very tempting to use lagrangeans, no?

> We need to assume all consumers have quasi-concave, strictly
monotone, differentiable utility functions

Then we can solve:

max ua(x?, y*) + Mug(wx — x*,w, — xB) — up).
(xA.y4)



Lets take the first order conditions of the above problem:

6UA A* A*y 6UB A* B*
8X (X Y )_)\8X (wX_X >Wy_X )
aUA * * aUB * *
78)/ (XA s A ) = Aw(wx — XA 70.)}/ — XB )



If (x**, yA", xB* yB™) is Pareto efficient then

G0N M) e =Xy ) Ry
G OA A R —x Ay A BB B

dy

» In short MRSQ}, = MRSf:y

» This condition is necessary and sufficient



Theorem
Suppose that both consumers have utility functions that are
quasi-concave and strictly increasing. Suppose that

A* O A¥* A* A*Y - . . . .
(x*,y™ Jwx — x,wy, — y™) is an interior feasible allocation.
Then (XA*,yA*, Wy — XA*,wy — yA") is Pareto efficient if and only

PG NI T G AR A W - it}
D (AT A7) T B Ay yR) R (E )




Intuition

Suppose that we are at an allocation where
MRSQ}, =2> I\/IRSEy = 1. Can we make both consumers better
off?



Intuition

Suppose that we are at an allocation where
MRS)f‘,y =2> I\/IRSEy = 1. Can we make both consumers better
off?

> A gives up 1 unit of y to person B in exchange for unit of x
» B is indifferent since his I\/IRSE}, =1

> A receives a unit of x and only needs to give one unit of y (he
was willing to give two)

» We have reallocated goods to make A strictly better off
without hurting B



General case

max ur(xi, ..., x!) such that (X2, ..., x%) > uy,

((xll,...,xz),...,(x{,.,.,xz))

u/(xll, ... ,XD > uy,



General case

Theorem

Suppose that all utility functions are strictly increasing and
quasi-concave. Suppose also that ((%3,.. x&) A (
a feasible interior allocation. Then ((%%,...,%0),...,(&,...,&]))
is Pareto efficient if and only if (%%, ...,%),... ()?{, &)

exhausts all resources and for all pairs of goods /, V',

MRS} (&1, ..., %) = -+- = MRS} s(%{, ..., %[).



> Utility functions must be strictly increasing, quasi-concave,
and differentiable!
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Perfect substitutes

Suppose that
ua(x?, yA) = 2x4 + yA
UB(XB,yB) — XB —|')/B
Wt =(1,1)
wB =(1,1)
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Perfect complements

Suppose that






Ua
















Make A as well as we can without making B worse off
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Make A as well as we can without making B worse off




























» What about: ua(x,y) = x?>+y2 ug(x,y) =x+y?

> Try it at home!



Recap

> We expect all exchanges to happen on the contract curve

(hence its name)

> We expect all voluntary exchanges to be in the orange box

» Can we say more? Not without prices
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