Lecture 2: General Equilibrium

Mauricio Romero

Lecture 2: General Equilibrium

Cobb-Douglas
Using calculus
Perfect substitutes
Perfect complements

Cobb-Douglas

$$
\begin{aligned}
& u_{A}(x, y)=x^{\alpha} y^{1-\alpha} \\
& u_{B}(x, y)=x^{\beta} y^{1-\beta}
\end{aligned}
$$

For graph suppose

$$
\begin{array}{r}
\alpha=0.7 \\
\beta=0.3 \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

Cobb-Douglas

Cobb-Douglas

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers

$$
\begin{aligned}
M R S_{x, y}^{A} & =\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} \\
M R S_{x, y}^{B} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}
\end{aligned}
$$

Cobb-Douglas

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers

$$
\begin{aligned}
\operatorname{MRS}_{x, y}^{A} & =\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} \\
\operatorname{MRS}_{x, y}^{B} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}
\end{aligned}
$$

But we haven't used the fact that

$$
\begin{aligned}
x^{A}+x^{B} & =\omega_{x} \\
y^{A}+y^{B} & =\omega_{y}
\end{aligned}
$$

Cobb-Douglas

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers

$$
\begin{aligned}
M R S_{x, y}^{A} & =\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} \\
M R S_{x, y}^{B} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}
\end{aligned}
$$

But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}
\end{gathered}
$$

Cobb-Douglas

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers

$$
\begin{aligned}
M R S_{x, y}^{A} & =\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} \\
M R S_{x, y}^{B} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} & =\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}
\end{aligned}
$$

But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
y^{A}=\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{\omega_{y} x^{A}}{\omega_{x}+\left(\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta}-1\right) x^{A}}
\end{gathered}
$$

Cobb-Douglas

Lecture 2: General Equilibrium

Cobb-Douglas

Using calculus
Perfect substitutes
Perfect complements

Using calculus

Essentially in this exercise we are doing the following:

$$
\begin{aligned}
\max _{\left(x^{A}, y^{A}\right),\left(x^{B}, y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right) & \text { such that } \\
& u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B}=u_{B}\left(x^{B^{*}}, y^{B^{*}}\right) \\
& x^{B}+x^{A} \leq \omega_{x} \\
& y^{B}+y^{A} \leq \omega_{y}
\end{aligned}
$$

Theorem

Consider an Edgeworth Box economy and suppose that all consumers have strictly monotone utility functions. Then a feasible allocation $\left(x^{A^{*}}, y^{A^{*}}, x^{B^{*}}, y^{B^{*}}\right)$ is Pareto efficient if and only if it solves

$$
\begin{aligned}
\max _{\left(x^{A}, y^{A}\right),\left(x^{B}, y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right) & \text { such that } \\
& u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B}=u_{B}\left(x^{B^{*}}, y^{B^{*}}\right) \\
& x^{B}+x^{A} \leq \omega_{x} \\
& y^{B}+y^{A} \leq \omega_{y}
\end{aligned}
$$

- Very tempting to use lagrangeans, no?
- We need to assume all consumers have quasi-concave, strictly monotone, differentiable utility functions

Then we can solve:

$$
\max _{\left(x^{A}, y^{A}\right)} u_{A}\left(x^{A}, y^{A}\right)+\lambda\left(u_{B}\left(\omega_{x}-x^{A}, \omega_{y}-x^{B}\right)-\underline{u}_{B}\right) .
$$

Lets take the first order conditions of the above problem:

$$
\begin{aligned}
& \frac{\partial u_{A}}{\partial x}\left(x^{A^{*}}, y^{A^{*}}\right)=\lambda \frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-x^{B^{*}}\right) \\
& \frac{\partial u_{A}}{\partial y}\left(x^{A^{*}}, y^{A^{*}}\right)=\lambda \frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-x^{B^{*}}\right)
\end{aligned}
$$

If $\left(x^{A^{*}}, y^{A^{*}}, x^{B^{*}}, y^{B^{*}}\right)$ is Pareto efficient then

$$
\frac{\frac{\partial u_{A}}{\partial x}\left(x^{A^{*}}, y^{A^{*}}\right)}{\frac{\partial u_{A}}{\partial y}\left(x^{A^{*}}, y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(x^{B^{*}}, y^{B^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(x^{B^{*}}, y^{B^{*}}\right)} .
$$

- In short $M R S_{x, y}^{A}=M R S_{x, y}^{B}$
- This condition is necessary and sufficient

Theorem

Suppose that both consumers have utility functions that are quasi-concave and strictly increasing. Suppose that $\left(x^{A^{*}}, y^{A^{*}}, \omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)$ is an interior feasible allocation. Then $\left(x^{A^{*}}, y^{A^{*}}, \omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)$ is Pareto efficient if and only if

$$
\frac{\frac{\partial u_{A}}{\partial x}\left(x^{A^{*}}, y^{A^{*}}\right)}{\frac{\partial u_{A}}{\partial y}\left(x^{A^{*}}, y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(x^{B^{*}}, y^{B^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(x^{B^{*}}, y^{B^{*}}\right)}
$$

Intuition

Suppose that we are at an allocation where $M R S_{x, y}^{A}=2>M R S_{x, y}^{B}=1$. Can we make both consumers better off?

Intuition

Suppose that we are at an allocation where $M R S_{x, y}^{A}=2>M R S_{x, y}^{B}=1$. Can we make both consumers better off?

- A gives up 1 unit of y to person B in exchange for unit of x
- B is indifferent since his $M R S_{x, y}^{B}=1$.
- A receives a unit of x and only needs to give one unit of y (he was willing to give two)
- We have reallocated goods to make A strictly better off without hurting B

General case

$$
\max _{\left(\left(x_{1}^{1}, \ldots, x_{L}^{\prime}\right), \ldots,\left(x_{1}^{\prime}, \ldots, x_{L}^{\prime}\right)\right)} u_{1}\left(x_{1}^{1}, \ldots, x_{L}^{\prime}\right) \text { such that } u_{2}\left(x_{1}^{2}, \ldots, x_{L}^{2}\right) \geq \underline{u}_{2},
$$

$$
\begin{aligned}
& u_{l}\left(x_{1}^{\prime}, \ldots, x_{L}^{\prime}\right) \geq \underline{u}_{I}, \\
& x_{1}^{1}+\cdots+x_{1}^{\prime} \leq \omega_{1}, \\
& \vdots \\
& x_{L}^{1}+\cdots+x_{L}^{\prime} \leq \omega_{L} .
\end{aligned}
$$

General case

Theorem

Suppose that all utility functions are strictly increasing and quasi-concave. Suppose also that $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is a feasible interior allocation. Then $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is Pareto efficient if and only if $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ exhausts all resources and for all pairs of goods ℓ, ℓ^{\prime},

$$
M R S_{\ell, \ell^{\prime}}^{1}\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right)=\cdots=M R S_{\ell, \ell^{\prime}}^{\prime}\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)
$$

- Utility functions must be strictly increasing, quasi-concave, and differentiable!

Lecture 2: General Equilibrium

Cobb-Douglas
 Using calculus
 Perfect substitutes

Perfect complements

Perfect substitutes

Suppose that

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=2 x^{A}+y^{A} \\
u_{B}\left(x^{B}, y^{B}\right)=x^{B}+y^{B} \\
\omega^{A}=(1,1) \\
\omega^{B}=(1,1)
\end{array}
$$

Perfect substitutes

Lecture 2: General Equilibrium

Cobb-Douglas Using calculus Perfect substitutes
Perfect complements

Perfect complements

Suppose that

$$
\begin{array}{r}
u_{A}\left(x^{A}, y^{A}\right)=\min \left(x^{A}, 2 y^{A}\right) \\
u_{B}\left(x^{B}, y^{B}\right)=\min \left(2 x^{B}, y^{B}\right) \\
\omega^{A}=(3,1) \\
\omega^{B}=(1,3)
\end{array}
$$

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

- What about: $u_{A}(x, y)=x^{2}+y^{2}, u_{B}(x, y)=x+y$?
- Try it at home!

Recap

- We expect all exchanges to happen on the contract curve (hence its name)
- We expect all voluntary exchanges to be in the orange box
- Can we say more? Not without prices

