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I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



I Game theory is a formal methodology and a set of techniques
to study: rational agents in strategic settings.

I ‘Rational’: maximizing over well-defined objectives

I ‘strategic’: agents care about the actions taken by other
agents

I In general equilibrium theory, agents are price takers and solve

max
x

u(x)

s.t.
p · x ≤ p · w ,

I Agents decisions do not affect p, and thus there is no
strategic interaction

I Although p is determined from the interaction of all agents
(aggregate supply = aggregate demand)



Definition (Strategic Interaction)

There is strategic interaction when an agent takes into account
how her actions affect other individuals and how other’s action
affect her

I Originally, game theory was developed to design optimal
strategies in games like chess or poker

I However, it allows to study a wide range of situations that
were did not fit in traditional microeconomics theory
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History in one slide

I Modern game theory owes a lot to John Von Neumann. In
1928, he proved the minmax theorem

I In 1944, von Neumann and Oscar Morgenstern published their
classic book, “Theory of Games and Strategic Behavior”,
which extended the work on zero-sum games, and also started
cooperative game theory

I In the early 1950’s, John Nash made his seminal contributions
to non-zero-sum games and started bargaining theory

I In 1967–1968, John Harsanyi formalized methods to study
games of incomplete information

I In the 1970s, game theory became part of main stream
economics (and other social sciences)
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Strategic situations and their representation

A game is the description of a strategic situation. To describe a
game we need to describe the following elements:

I Players or participants: The agents that take decisions in the
game

I The rule of the game: a) What actions are available to each
player (at each decision point), and b) the order in which
players take those actions

I The information available to each player

I How the results of the game depends on the actions taken by
each individual

I How individuals value the results of the game
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A few examples

Example (Matching pennies (pares y nones) – Sequential)

Two players, Ana & Bart, choose whether to show one or two
fingers. First, Ana shows fingers to Bart, then Bart, after observing
Ana’s play, chooses how many fingers to show. If the total number
of fingers is even, then Bart pays Ana 1,000 MXN. If the total
number of fingers is odd, then Ana pays Bart 1,000 MXN.



A few examples

Example (Matching pennies (pares y nones) – Simultaneous)

Two players, Ana & Bart, choose whether to show one or two
fingers simultaneously. If the total number of fingers is even, then
Bart pays Ana 1,000 MXN. If the total number of fingers is odd,
then Ana pays Bart 1,000 MXN.
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I Have a well defined utility function

I Under uncertainty they maximize the expected utility
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I Not a trivial assumption

I Up to now utility functions are useful because they represent
preferences

I If u(x) represents some preferences, then f (u(x)) does as well
if f is monotonically increasing

I
x∗ = arg max

x ·p≤w ·p
u(x) = arg max

x ·p≤w ·p
f (u(x)),

for any increasingly monotone f

I If x∗ solves
max

x ·p≤w ·p
Eu(x)

it does not necessarily solve

max
x ·p≤w ·p

Ef (u(x))

I In other words, the specific utility function has important
repercussions
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I There are two lotteries someone can buy.

I The first pays 10 with probability 0.5 y 0 with probability 0.5
and costs 5

I The second pays 100 with probability 0.5 y 0 with probability
0.5 and costs 50

I The only difference is the monetary units they use

I Assume there are three agents with utility functions:
u1(x) = ln(x + 51), u2(x) = x + 51, u3(x) = ex+51

I All 3 agents have the “same preferences”
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Utility Lottery 1 Lottery 2

Eu1 0.5 ln(56) + 0.5 ln(46) ≈ 3.92 0.5 ln(101) + 0.5 ln(1) ≈ 2.3
Eu2 0.5(56) + 0.5(46) = 51 0.5(101) + 0.5(1) = 51
Eu3 0.5e56 + 0.5e46 ≈ 1.04× 1024 0.5e101 + 0.5e1 ≈ 3.65× 1043



I If x∗ = arg maxx∈Γ Eu(x)

I Then x∗ = arg maxx∈Γ Eau(x) + b

I Proof that linear (or afine) transformations of the utility
function represent the same preferences under uncertainty.
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I What information is available to each player?

I Let’s see with an example

I Suppose there are 3 players and “god” places a hat over them

I The hat can be white or black

I All 3 individuals can see the hat the other two are wearing,
but not their own

I All hats are white, but no one knows their own color (just that
it’s black or white)

I Now they go around trying to guess their own color. If they
get it correctly they earn all sorts of riches, but if they don’t
they die. They can either guess or pass

I What happens?

I They go around for ever saying “pass”
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I Mow suppose “god” says: There is at least one white hat

I What happens?

I The first two pass, the third says “white”

I Why?

I They already knew there was at least a white hat (they knew
there were at least two)

I They already knew everyone knew there was at least a white
hat

I Now they all now, that everyone knows, that everyone knows
(ad infinitum) that there is a white hat.
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I This highlights the difference between mutual knowledge e
common knowledge

I We say Y is common knowledge when all players know Y ,
and they all know that everyone knows Y , and they all know
that everyone knows that everyone knows Y .... ad infinitum

I We will always assume things are common knowledge (there
are some extensions to the cases when utility functions are not
common knowledge)
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We will use the following notation:

I Game participants (players) will be denoted by index i , where
i = 1, ..,N and there are N players.

I Ai is the space of possible actions for individual i . ai ∈ Ai is
an action.

I If we have a vector a = (a1, ..., ai−1, ai , ai+1, ..., aN), then we
will denote by a−i := (a1, ..., ai−1, ai+1, ..., aN) y a = (ai , a−i ).

I Si is the strategy space for individual i . si ∈ Si is a strategy.

I A strategy is a complete action plan. i.e., is an action for
every possible contingency of the game a player may face.

I ui is the utility of player i . ui (si , s−i ), i.e., the utility of player
i may depend on her strategy, as well as the strategy of other
players.
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I A strategy is a complete action plan.

I The difference between strategy and actions is VERY
important

I Think of matching pennies – Sequential.

I The actions for both individuals are Ai = {1, 2}

I A strategy for Ana is an action (she chooses first, and thus
faces a single contingency) Sana = Aana

I For Bart, a strategy has an action for the two contingencies
he may face (1) if Ana chooses 1 finger, (2) if Ana chooses 2
fingers

I SBart = {(1, 1), (1, 2), (2, 1), (2, 2)}
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