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Beauty contest

» Consider the following game among 100 people. Each
individual selects a number, s;, between 20 and 60.

» Let a_; be the average of the number selected by the other 99
s;

people. i.e. a_; = Z#i =

» The utility function of the individual i is
u;(s;, S_,') =100 — (S,’ — %a_;)2



Beauty contest

» Each individual maximizes his utility, FOC:

—2(5,' — *a_,') =0



Beauty contest

» Each individual maximizes his utility, FOC:

—2(5,' — *a_,') =0

» Individuals would prefer to select a number that is exactly
equal to 1.5 times the average of the others



Beauty contest

» Each individual maximizes his utility, FOC:

—2(5,' — *a_,') =0

» Individuals would prefer to select a number that is exactly
equal to 1.5 times the average of the others

» That is they would like to choose s; = %a_,-



Beauty contest

» Each individual maximizes his utility, FOC:

—2(5,' — *a_,') =0

» Individuals would prefer to select a number that is exactly
equal to 1.5 times the average of the others

» That is they would like to choose s; = %a_,-

> but a_; € [20,60]



Beauty contest

» Each individual maximizes his utility, FOC:

—2(5,' — *a_,') =0

» Individuals would prefer to select a number that is exactly
equal to 1.5 times the average of the others

» That is they would like to choose s; = %a_,-

> but a_; € [20,60]

» Therefore s; = 20 is dominated by s; = 30
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Beauty contest
» The same goes for any number between 20 (inclusive) and 30
(not included)

> Knowing this, all individuals believe that everyone else will
select a number between 30 and 60 (i.e., a_; € [30,60])

» Playing a number between 30 and 45 (not including) would be
strictly dominated by playing 45

» Knowing this, all individuals believe that everyone else will
select a number between 45 and 60 (i.e., a_; € [45,60])

» 60 would dominate any other selection and therefore all the
players select 60.

» The solution by means of iterated elimination of dominated
strategies is (60, 60, ..., 60)
(S ——

100 times
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There is no strictly dominated strategy

However, C always gives at least the same utility to player 1
as B

It's tempting to think player 1 would never play C

However, if player 1 is sure that player two is going to play a
he would be completely indifferent between playing B or C



Definition
si weakly dominates s/ if for all opponent pure strategy profiles,
S_j € 5_,',
ui(si, s—i) > ui(sj,s—;)
and there is at least one opponent strategy profile s”, € S_; for

which
(SH ) > U/(sl{vsﬁi)'
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Given the assumptions we have, we can not eliminate a
weakly dominated strategy

Rationality is not enough

Even so, it sounds “logical” to do so and has the potential to
greatly simplify a game

There is a problem, and that is that the order in which we
eliminate the strategies matters
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» If we eliminate B (C dominates weakly), then a weakly
dominates b and we can eliminate b and therefore player 1
would never play A. This leads to the result (C, a).

» If on the other hand, we notice that A is also weakly
dominated by C then we can eliminate it in the first round,
and this would eliminate a in the second round and therefore
B would be eliminated. This would result in (C, b).
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Remember the definition of competitive equilibrium in a market
economy.

Definition

A competitive equilibrium in a market economy is a vector of prices
and baskets x; such that: 1) x; maximizes the utility of each
individual given the price vector i.e.

xi=arg max  u(x;)
p cdotx;<p-w;

2) the markets empty.

IR

i



» 1) means that given the prices, individuals have no incentive
to demand a different amount



» 1) means that given the prices, individuals have no incentive
to demand a different amount

> The idea is to extend this concept to strategic situations
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Best response

We denote BR;(s_;) (best response) as the set of strategies of
individual / that maximize her utility given that other individuals
follow the strategy profile s_;. Formally,

Definition
Given a strategy profile of opponents s_;, we can define the best
response of player i:

BR;(s_;) = arg max u;(s/,s_;).
S{ES,’

> s; € BRi(s_;) if and only if uj(sj, s_;) > uj(s!,s_;) for all
/

» There could be multiple strategies in BR;(s_;) but all such
strategies give the same utility to player / if the opponents are
indeed playing according to s_;



Nash equilibrium

Definition

Suppose that we have a game
(I=A1,2,...n},51,...,5n,u1,...,up). Then a strategy profile

s* = (s],...,s}) is a pure strategy Nash equilibrium if for every i
and for every s; € S,

ui(s;',s*;) > ui(si, s ;).
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Nash equilibrium

Definition

Suppose that we have a game
(I={1,2,...,n},51,...,Sn,u1,...,up). Then a strategy profile
s* =(s{,...,s;) is a pure strategy Nash equilibrium if for every
i, si € BRi(s*;).

» Analogous to that of a competitive equilibrium in the sense
that nobody has unilateral incentives to deviate

P once this equilibrium is reached, nobody has incentives to
move from there

» This is a concept of stability, but there is no way to ensure, or
predict, that the game will reach this equilibrium
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Beauty contest

» Consider the following game among 2 people. Each individual
selects a number, s;, between 20 and 60.



Beauty contest

» Consider the following game among 2 people. Each individual
selects a number, s;, between 20 and 60.

> Let s_; be the number selected by the other individual.



Beauty contest

» Consider the following game among 2 people. Each individual

selects a number, s;, between 20 and 60.

> Let s_; be the number selected by the other individual.

» The utility function of the individual /i is
U,‘(S,‘, S,,') =100 — (S,' - %S,,')2



Beauty contest

The best response of an individual is given by

( )* %S_,‘ if S_j < 40
Si\S—j) =
60 if s_; > 40

The Nash equilibrium is where both BR functions intersect (i.e.,
when both play 60)
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Prisoner’s dilemma

C NC
C | 55 (0,10
NC | 10,0 | 2,2

The best response functions are:

NC if S_j= C

BRi(s—;) =
(s-1) {/vc ifs.. = NC

The Nash equilibrium is where both BR functions intersect (i.e.,
when both play NC, i.e., (NC, NC))
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Prisoner’s dilemma — A trick

Best response of 2 to 1 playing NC

C NC
C | 55 (0,10
NC | 10,0 | 2,2

When underlined for both players, it is a Nash equilibrium (both
are doing their BR)



Battle of the sexes

()

2,1

0,0

0,0

1,2




Battle of the sexes

GIp
Gl21]00
P 10012
G ifs. =G
BRi(s_;) = e
P ifs, =P



Battle of the sexes

G P
G|21]00
P|l00]| 1.2

s =
BR(s_;) = G | s G
P ifs_;=P

Thus, (G, G) y (P, P) are both Nash equilibrium



Matching pennies (Pares o Nones) — Simultaneous

1 2

1 | (1000,-1000) | (-1000,1000)
(-1000,1000) | (1000,-1000)




Matching pennies (Pares o Nones) — Simultaneous

1 2

1 | (1000,-1000) | (-1000,1000)
2 | (-1000,1000) | (1000,-1000)




Matching pennies (Pares o Nones) — Simultaneous

1 2

1 | (1000,-1000) | (-1000,1000)
2 | (-1000,1000) | (1000,-1000)

1 ifSQIl

BRi(sy) =
(=) {2 if s, =2
2 ifs =1

BR>(s1) =
2(s1) {1 ifs, =2

There is no Nash equilibrium in pure strategies
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Nash equilibrium survive IDSDS

Theorem
Every Nash equilibrium survives the iterative elimination of strictly
dominated strategies



Proof
By contradiction:
» Suppose it is not true
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Proof

By contradiction:

>
| 4

>

>

Suppose it is not true

Then we must have eliminated some strategy in the Nash
equilibrium s*

Lets zoom in in the round where we first eliminate a strategy
that is part of s*

Without loss of generality say we eliminated the strategy s of
individual i

It must have been that

u,-(s,fk,s_,-) < u,-(s,-,s_,-)Vs_,- €S_;

In particular
u,'(S;k, S_,'*) < u;(s;, Si,-)
But this means s7 is not the best response of individual i to

&
5.



Proof

By contradiction:

>
| 4

>

>

Suppose it is not true

Then we must have eliminated some strategy in the Nash
equilibrium s*

Lets zoom in in the round where we first eliminate a strategy
that is part of s*

Without loss of generality say we eliminated the strategy s of
individual i

It must have been that

u,-(s,fk,s_,-) < u,-(s,-,s_,-)Vs_,- €S_;

In particular
u,'(S;k, S_,'*) < u;(s;, Si,-)

But this means s7 is not the best response of individual i to
&

S_j

And this is a contradiction!



Nash equilibrium survive IDSDS

Theorem
If the process of IDSDS comes to a single solution, that solution is
a Nash Equilibrium and is unique.
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Proof.
By contradiction:
> Suppose that the results from IDSDS (s*) is not a Nash
Equilibrium

» For some individual / there exits s; such that
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Proof

First let's proof its a Nash Equilibrium. The fact that is unique is
trivial by the previous theorem.

Proof.
By contradiction:

> Suppose that the results from IDSDS (s*) is not a Nash
Equilibrium

» For some individual / there exits s; such that
u;(s;, Si,‘) > U,'(S;‘, Si,-)

» But then s; could not have been eliminated



Proof

First let's proof its a Nash Equilibrium. The fact that is unique is
trivial by the previous theorem.

Proof.
By contradiction:

> Suppose that the results from IDSDS (s*) is not a Nash
Equilibrium

» For some individual / there exits s; such that
u;(s;, Si,‘) > U,'(S;‘, Si,-)

» But then s; could not have been eliminated
» And this is a contradiction!
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Cournot Competition

» We will apply the concept of pure Nash equilibrium to analyze
oligopoly markets

» Suppose that there are two firms that produce the same
product have zero marginal cost of production.

» If firm 1 and 2 produce g; and g, units of the commodity
respectively, the inverse demand function is given by:

P(Q) =120 - Q,Q = q1 + .

» Strategy space is S; = [0, +00)

» The utility function of player i is given by:

m1(q1, g2) = (120 — (g1 + 92)) g1,
m2(q1, g2) = (120 — (q1 + g2))q2.
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Cournot Competition
» Are there any strictly dominant strategies? The answer is no,
why?
» Are there any strictly dominated strategies?

» The strategies g; € (120, +00) are strictly dominated by the
strategy 0
» Are there any others? given g_;,

dm;
dq;

(120 — gi — g—i)q; = 120 — 2q; — q—;

» Therefore 60 strictly dominates any g; € (60, 120]
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Cournot Competition

120 q_

BRi(q-) >

» for any g; € [0,60], there exists some q_; € [0, 400) such
that BR,-(q_;) = q;

» Such a g; can never be strictly dominated

> After one round of deletion of strictly dominated strategies,
we are left with: S; = [0, 60]
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Cournot Competition

120 — q—;
BRi(q-i) = =

> g = [0560]
» Therefore g; € [0,30) are strictly dominated by g; = 30

> After two rounds of deletion of strictly dominated strategies,
we are left with: S; = [30, 60]



Cournot Competition

120 — q—;
BRi(q-i) = =T

> g = [30760]
» 45 strictly dominates all strategies g; € (45, 60]

> After three rounds of deletion of strictly dominated strategies,
we are left with: S; = [30, 45]



Cournot Competition

120 — q—;
BRi(q-i) = =T

> g = [30745]
» 37.5 strictly dominates all strategies g; € [30,37.5]

» After four rounds of deletion of strictly dominated strategies,
we are left with: S; = [37.5, 45]



Cournot Competition

» After (infinitely) many iterations, the only remaining
strategies are S; = 40

» The unique solution by IDSDS is g7 = g5 = 40.
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» At any Nash equilibrium, we must have: gi € BRi(g3) and
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Cournot Competition

v

There will also be a unique Nash equilibrium

B 120 — q—i

BRi(q-i) 5

» At any Nash equilibrium, we must have: gi € BRi(g3) and
9 € BRx(q7).

120 — g5
2

120 — g7
==

*

a1

*

7q2

» We can solve for gj and g5 to obtain:

g; = 40, g3 = 40, Q" = 80, M} = N} = 1600.



Cournot Competition vs Monopoly (cartel)

» In a perfectly competitive market, price equals marginal cost
and the total quantity produced will be @ = 120.



Cournot Competition vs Monopoly (cartel)

» In a perfectly competitive market, price equals marginal cost
and the total quantity produced will be @ = 120.

» A monopolist would solve the following maximization problem:

max(120 — Q)Q = Q" = 60, P* = 60, N = 3600.



Cournot Competition vs Monopoly (cartel)

» In a perfectly competitive market, price equals marginal cost
and the total quantity produced will be @ = 120.

» A monopolist would solve the following maximization problem:

max(120 — Q)Q = Q" = 60, P* = 60, N = 3600.

» The profits to each firm in the Cournot Competition is less
than half of the monopoly profits



Cournot Competition vs Monopoly (cartel)

» In a perfectly competitive market, price equals marginal cost
and the total quantity produced will be @ = 120.

» A monopolist would solve the following maximization problem:

max(120 — Q)Q = Q" = 60, P* = 60, N = 3600.

» The profits to each firm in the Cournot Competition is less
than half of the monopoly profits

» In a duopoly, externalities are imposed on the other firm
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Cournot Competition - General case

» n firms are competing a la Cournot

» The inverse demand function is given by:

P(g1+ g2+ - qn).

» Suppose that the cost function is ¢;(g;) for firm i

> To simplify notation, let Q—; = >, q;

>
max p(gi + Q-i)qi — ci(qi)



Cournot Competition - General case

max p(q; + Q-i)qi — ci(;)

» First order condition implies:

dP dc;

QI@(QI + Q)+ P(gi+ Q)= Tm(qi)
0551+ P(Q) = (@)
P(Q) - f,;'lj(q,-) )
P(Q) - g (a) — _ﬂif(@)
PQ)  ~ QP(Q)dQ

PQ-g@) g 1
P(Q) © Qeqr(Q)




Cournot Competition - General case

P(Q)—%(qf) g 1
P(Q)  Qep(Q)

» Therefore in a pure strategy Nash equilibrium (¢, g3, . ..

with Q* = g7 + g5 + - - - g5, we must have:

P(Q") —dtai) g 1

P(Q*) T Qrer(QY)
P@)-g@@) ¢ 1
P(Q*)  Qeqp(@Y)

PQ)—gela) q 1
P@) @ ear(@)

.q)



Cournot Competition - General case

» Suppose that all firms have exactly the same cost function ¢

P(Q*) — JL(,CI(QT) . qq 1

P(Q)  Qeqr(Q)
P@)—45(@) g 1
P(Q") QU egp(Q)

P@) - @) q
PQ) @ ear(@)
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Cournot Competition - General case

P> Let us conjecture that there exists a pure strategy Nash
equilibrium that is symmetric, in which

H=G="q=q
» In this case Q* = ng*
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P(ng*) neq,p(ng*)




Cournot Competition - General case

P> Let us conjecture that there exists a pure strategy Nash
equilibrium that is symmetric, in which

H=G="q=q
» In this case Q* = ng*

Png") —g(a) 1 1
P(ng*) neq,p(ng*)

P> Rewriting

1 0"
PQ)= % ( )
L+ 5 2o(@ 9



Lecture 12: Game Theory // Nash equilibrium
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Cartels



Cartels

» Suppose there are three firms who face zero marginal cost
» The inverse demand function is given by:

plai+e+@p)=1-ga-—qp-—gp=1-Q



Cartels

» Suppose there are three firms who face zero marginal cost
» The inverse demand function is given by:

plai+e+@p)=1-ga-—qp-—gp=1-Q

» The first order condition gives

1-Q-; 1-Q-
1-2¢gi-Q-;=0=gq; = 2Q = BRi(Q-/) 2Q .



Cartels

» Suppose there are three firms who face zero marginal cost
» The inverse demand function is given by:

plai+p+@p)=1-qg—-—qp-gag=1-Q

» The first order condition gives

1-Q; 1-Q
5 — BR,‘(Q,,') = 5 .

1—2q,'—Q,,' =0= q; =

» In a Nash equilibrium we must have:

1—-qg— a3
q = ; 3
,_1—qi—g3
%‘—#

« 1—q]— a5
CI3:7; 2.




Cartels

» The easiest way to solve this first, let us add the three
equations to get:

*7%_ * *7%
Q =5 Q= Q =



Cartels

» The easiest way to solve this first, let us add the three
equations to get:

3 3
Q 5 Q Q 2
> Note that
=57 2 "2 2 @



Cartels

» The easiest way to solve this first, let us add the three
equations to get:

3 3
Q 5 Q Q 2
> Note that
=57 2 "2 2 @



Cartels

» The easiest way to solve this first, let us add the three
equations to get:

*7%_ * *7%
Q =5 Q= Q =

> Note that

9 43

_ _ 1
> g =9 =0q;=;

» Price is p* = 1/4 and all firms get the same profits of 1/16
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Cartels
> Two of the firms merge into firm A, while one of the firms
remains single, call that firm B
» Each firm then again faces the profit maximization problem:

1 — a_:
mqax(l —qi —q-i)qi = BRi(q-i) = 2q >

» Therefore

qA_ 2
QB—iA-
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Cartels

» Solving this:

» The price is then p* =1/3

» If the profits are shared equally among firms 1 and 2 who have
merged, then profits of firms 1 and 2 are 1/18 whereas firm 3
obtains a profit of 1/9

» Firms 1 and 2 suffered, while firm 3 is better off!

» Firm 3 is obtaining a disproportionate share of the joint profits
(more than 1/3)
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Cartels

> You might expect that 3 may want to join the cartel as well...

P In the monopolist problem, we solve:

mgx(l -Q)Q = Q" = %

» Total profits then are given by % which means that each firm
obtains a profit of 1—12 < é

» Firm 3 clearly wants to stay out



Cartels

There are many ifficulties associated with sustaining collusive
agreements (e.g., the OPEC cartel)
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