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Theorem (Nash’s Theorem)

Suppose that the pure strategy set Si is finite for all players i . A
Nash equilibrium always exists.



Proof (just the intuition)

I Proof is very similar to general equilibrium proof

I Two parts:

1. A Nash equilibrium is a fixed point of the best response
functions

2. A finite game with mixed strategies has all the pre-requisites to
guarantee a fixed point

I Remember X ∗ is a fixed point of F (X ) if and only if
F (X ∗) = X ∗
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Proof - Part 1

I Let (s∗1 , ..., s
∗
n) be a Nash equilibrium

I Then s∗i = BRi (s
∗
−i ) for all i

I Let Γ(s1, ..., sn) = (BR1(s−1),BR2(s−2), ...,BRn(s−n))

I Γ(s∗1 , ..., s
∗
n) = (s∗1 , ..., s

∗
n)

I Therefore (s∗1 , ..., s
∗
n) is a fixed point of Γ
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Proof - Part 2

Theorem (Kakutani fixed-point theorem)

Let Γ : Ω→ Ω be a correspondence that is upper semi-continuous,
Ω be non empty, compact (closed and bounded), and convex ⇒ Γ
has at least one fixed point



Proof - Part 2

So we want to apply Kakutani’s theorem. If the game is finite and
we allow mixed strategies then

I Γ : Σ→ Σ

I Σ is compact: It includes the boundary (pure strategies) and
is bounded (the game only has a finite set of strategies)

I Σ is convex: By allowing mixed strategies, we automatically
make it convex

I Γ(s1, ..., sn) = (BR1(s−1),BR2(s−2), ...,BRn(s−n)) is upper
semi-continous. Why?

I If two pure strategies are in the best response of a player
(si , s

′
i ∈ BRi (s−i )), then any mixing of those strategies is also

a best response (i.e., pσ + (1− p)σ ∈ BRi (s−i ))

I Therefore if Γ(s1, ..., sn) has two images, those two images are
connected (via all the mixed strategies that connect those two
images)

I That happens to be the definition of upper semi-continous
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I Dynamic game are those that capture a dynamic element in
which some players know what others did before playing

I Reminder: A (pure) strategy is a complete contingent plan
of action at every information set

I The set of Nash equilibria of the extensive form game is
simply the set of all Nash equilibria of the normal form
representation of the game

I Some of the equilibria do not make much sense intuitively
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Figure 1: Extensive Form for Predation Game

Example 23 (Predation). Firm 1 (the entrant) can choose whether to enter a market

against against a single incumbent, Firm 2, or exit. If 1 enters, Firm 2 can either respond

by fighting or accommodating. The extensive form and payoffs are drawn in Figure 1.

To find Nash equilibria of this game, we can write out the normal form as follows.

f a

e -3,-1 2,1

x 0,2 0,2

Clearly, (x, f) is a Nash equilibrium, as is (e, a).42 However, (x, f) does not seem like

a plausible prediction: conditional upon Firm 1 having entered, Firm 2 is strictly better off

accommodating rather than fighting. Hence, if Firm 1 enters, Firm 2 should accommodate.

But then, Firm 1 should foresee this and enter, since it prefers the outcome (e, a) to what

it what it gets by playing x. �

The problem in the Example is that the “threat” of playing f , that is fighting upon

entry, is not credible. The outcome (x, f) is Nash because if Firm 2 would fight upon

entry, then Firm 1 is better off exiting. However, in the dynamic game, Firm 1 should

not believe such an “empty threat”. The crux of the matter is that the Nash equilibrium

concept places no restrictions on players’ behavior at nodes that are never reached on the

equilibrium path. In this example, given that Firm 1 is playing x, any action for Firm 2

is a best response, since all its actions are at a node that is never reached when Firm 1

places x. Thus, by choosing an action (f) that it certainly wouldn’t want to play if it were

actually forced to act, it can ensure that Firm 1’s [unique, in this case] best response is to

play x, guaranteeing that it in fact won’t have to act.

42There are also some MSNE involving x.

40



f a

e -3,-1 2,1

x 0,2 0,2

Two Nash equilibria: (x,f) y (e,a).
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I But (x,f) is a Nash equilibrium only because Firm 2 threatens
to do a price war

I But f is not a credible strategy

I If Firm 1 enters the market, Firm 2 will accommodate

I We will study a refinement that will get rid of these type of
equilibria

I The overall idea is that agents must play an optimal action in
each node

I In other words, play an optimal action in each node,
conditional on reaching such node

I In the previous example, f is not optimal if we reach the
second period
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I A natural way to make sure players are optimizing in each
node is to solve the game via backwards induction

I This amounts to starting from the end of the game, and work
the way backwards by eliminating non-optimal strategies

Theorem (Zermelo)

In every finite game where every information set has a single node
(i.e., complete information), has an Nash equilibrium that can be
derived via backwards induction. If the payouts to players are
different in all terminal nodes, then the Nash equilibrium is unique.
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Theorem (Zermelo II)

In any finite two-person game of perfect information in which the
players move alternatingly and in which chance does not affect the
decision making process, if the game cannot end in a draw, then
one of the two players must have a winning strategy (i.e. force a
win).



Centipede Game
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C P

C,C 3,3 0,2
C,P 4,1 0,2
P,C 1,0 1,0
P,P 1,0 1,0

I Nash equilibria are {(P,P),P} and {(P,C ),P}

I But if the game repeats 1,000 times it would be impossible to
analyze

I But by backward induction, the solution is to play P in each
period
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Consider the following game
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9

Some Applications of Subgame Perfection

16-9: Monopoly manufacturer/monopoly retailer

M produces at a cost $10 per unit.
M sells to R, who then sells to consumers.
The inverse demand curve is p = 200 – q/100.

The game runs as follows:  (1) M chooses a price x to offer to R.
(2) R observes x and then chooses how many units q to purchase.
(3) M obtains profit uM = q(x – 10); R obtains (200 – q/100)q – xq.

10

Calculating the subgame-perfect Nash equilibrium:

Note that there are an infinite number of information sets for R,
each is identified by a number x, and each initiates a subgame.

Calculate the equilibrium of these subgames, by finding R’s
optimal q as a function of x... q*(x) = 10000 – 50x.

M can anticipate this from R, so M’s payoff of choosing x is
q*(x)(x – 10) = (10000 – 50x)(x – 10).  M’s optimum is... x* = 105.

11

Advertising and Competition

The game:

1. Firm 1 selects a nonnegative advertising level a  at cost  2a3/81.
2. Firm 2 observes a and then the two firms engage in Cournot

competition, where they select quantities q1 and q2, produce at
zero cost, and face the inverse demand curve p = a – q1 – q2 .

12



I Can’t be solved by backwards induction

I Thus, we need something else

I First, we need to defined a subgame
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A sub-game, of a game in extensive form, is a sub-tree such that

I It starts in a single node

I If contains a node, it contains all subsequent nodes

I If it contains a node in an information set, it contains all
nodes in the information set



Definition
A subgame of an extensive form game is the set of all actions and
nodes that follow a particular node that is not included in an
information set with another distinct node



By definition, the original game is a subgame
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42There are also some MSNE involving x.
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Since in some games (where multiple nodes are in the same
information set) we can’t formally choose how people are
optimizing, we extend the notion of backwards induction to
subgames

Definition (Subgame perfect Nash equilibria)

A pure strategy profile is a Subgame perfect Nash equilibria
(SPNE) if and only if it involves the play of a NE in every subgame
of the game.



Remark
Every SPNE is a NE

Remark
As in normal form games, mixed strategy SPNE can be defined but
this is a bit technical. Thus, we will not worry about it for the
purposes of the course.



1
A

2 X

Y

X

Y

3, 3

4, 2

4, 1

B
6, 7

5, 5

1

L

M

A

B

X Y
2

1

3, 3 4, 2

6, 7 4, 1

LA

LB

X Y
2

1

MA

MB

5, 5 5, 5

5, 5 5, 5

3, 3 4, 2

6, 7 4, 1

9

Some Applications of Subgame Perfection

16-9: Monopoly manufacturer/monopoly retailer

M produces at a cost $10 per unit.
M sells to R, who then sells to consumers.
The inverse demand curve is p = 200 – q/100.

The game runs as follows:  (1) M chooses a price x to offer to R.
(2) R observes x and then chooses how many units q to purchase.
(3) M obtains profit uM = q(x – 10); R obtains (200 – q/100)q – xq.

10

Calculating the subgame-perfect Nash equilibrium:

Note that there are an infinite number of information sets for R,
each is identified by a number x, and each initiates a subgame.

Calculate the equilibrium of these subgames, by finding R’s
optimal q as a function of x... q*(x) = 10000 – 50x.

M can anticipate this from R, so M’s payoff of choosing x is
q*(x)(x – 10) = (10000 – 50x)(x – 10).  M’s optimum is... x* = 105.
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Advertising and Competition

The game:

1. Firm 1 selects a nonnegative advertising level a  at cost  2a3/81.
2. Firm 2 observes a and then the two firms engage in Cournot

competition, where they select quantities q1 and q2, produce at
zero cost, and face the inverse demand curve p = a – q1 – q2 .
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I The game has 3 NE: (LB,X), (MA,Y),(MB,Y)

I The subgame has a single NE: (B,X)

I The SPNE is (LB,X)


	Nash's Theorem

