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I Repeated games are often useful for modeling relationships
between two or more agents that interact in a strategic
situation not just once but over a long period of time

I Agent may or may not cooperate with one another even
though this may not in the best interest of the agents in the
short run through a system of rewards and punishments

I A game can repeat itself several times

I Static games turn into dynamic by repetition

I We will use (G ,T ) to denote that game G is repeated T times
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1. In period 1, players simultaneously play the game G .

2. Players observe the actions chosen by the players in period 1.
Then in period 2, players simultaneously play the game G .

3. This game proceeds until time T .

4. After time T , if the action profiles chosen in times 1, 2, . . . ,T
are given by

(
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Consider the following two-player game:

I Each player i = 1, 2 simultaneously decide whether to play
ei = 1 (work) or ei = 0 (shirk)

I Working incurs a cost of 1 however increases the utility of the
other player −i by 2

I Thus,
ui (ei , e−i ) = 2e−i − ei .
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Prisoner’s Dilemma (Game G )

e2 = 1 e2 = 0

e1 = 1 1, 1 −1, 2

e1 = 0 2,−1 0, 0



I What happens when T = 1

I NE: Players 1 and 2 will both choose (e1 = 0, e1 = 0)
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Imagine players are engaged in a long run relationship that lasts
more than just playing the game once: (G , 2)

1. Both players play the simultaneous move game G .

2. Both players observe the actions chosen by the two players.
Then they play G again.

3. Then payoffs are realized as the discounted sum of the utilities
of the actions in each period with discount factor δ ∈ (0, 1].
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Suppose that the two players chose (e1 = 1, e2 = 1) in the first
period
In the second period, they chose (e1 = 0, e2 = 1)

u1 = 1 + δ · 2
u2 = 1 + δ · (−1).
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I We will solve for the set of pure SPNE of this game.

I Player 1 has 5 information sets in total

I A pure strategy for player 1 must specify what he does in each
of these information sets

I Player 1 has a total of 32 (25) pure strategies

I Similarly, player 2 has a total of 32 pure strategies
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I There are 5 subgames

I Start at the end of the game (i.e., T = 2)

I The first subgame that we will analyze is the one that the
players encounter after having play (e11 = 0, e12 = 0) in T = 1:
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The Nash equilibria can be seen by writing out the normal form of
the game.

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 δ, δ −δ, 2δ
e1 = 0 2δ,−δ 0, 0



I This game has a unique Nash equilibrium in which the players
play (e21 = 0, e22 = 0)

I Therefore after having observed (e11 = 0, e12 = 0) in the first
period, both players will play (e21 = 0, e22 = 0) in period 2
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Consider the subgame following a play of (e11 = 1, e12 = 0) in the
first period. The extensive form of this subgame is given by:
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The normal form of this subgame can be seen in the Table

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 −1 + δ, 2 + δ −1− δ, 2 + 2δ

e1 = 0 −1 + 2δ, 2− δ −1, 2



I (e1 = 0, e2 = 0) is the unique Nash equilibrium

I In any SPNE, (e21 = 0, e22 = 0) must be played after observing
(e11 = 1, e12 = 0)
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I We can go through the remaining smaller subgames after the
observation of (e11 = 1, e12 = 0) and after the observation of
(e11 = 1, e12 = 1)

I We will reach the same conclusion in each of these scenarios:
that (e21 = 0, e22 = 0) must be played in each of these
subgames

I Regardless of the observed action, (0, 0) is played in period 2

I Why is this the case?

I The idea is that payoffs that have accrued in period 1 are
essentially sunk, and have no influence on incentives in period
2
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To see this consider the normal form representation in the subgame
after the observation of (e11 = 1, e12 = 0)

Normal Form of Extensive Form
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e1 = 1 −1 + δ, 2 + δ −1− 1δ, 2 + 2δ

e1 = 0 −1 + 2δ, 2− δ −1, 2



I We can subtract off the payoff that player 1 received in period
1 and divide through player 1’s payoffs by δ to obtain the
following payoff matrix

I We can do the same thing for player 2’s payoffs and get the
payoff matrix
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I We’ve just performed affine transformations of each person’s
utility functions

I This payoff matrix is equivalent from a strategic perspective
from the original normal

I Thus the set of Nash equilibria will remain unchanged after
these transformations

I This normal form is just the original prisoner’s dilemma

I This will be true no matter the action profile played in period
1
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I So what have we learned?

I Basically after any history, the strategic normal form is
essentially the same as the original prisoner’s dilemma

I Both players play (e21 = 0, e22 = 0) after any information set in
the last period
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I Now let us see what must be played in the first period by the
two players

I Both players anticipate that (e21 = 0, e22 = 0) will be played
after any chosen action profile in the first period

I We can simplify the extensive form game to the following:
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If we draw the normal form of this game, then we get:

Normal Form of Extensive Form

e2 = 1 e2 = 0

e1 = 1 1, 1 −1, 2

e1 = 0 2,−1 0, 0

The unique Nash equilibrium of the above normal form game is
(e11 = 0, e12 = 0)



Therefore the unique SPNE is:
 e11 = 0

e21 = 0
e21 = 0
e21 = 0
e21 = 0

 ,

 e12 = 0

e22 = 0
e22 = 0
e22 = 0
e22 = 0




In other words both players always shirk



I Here the unique SPNE requires all players to play ei = 0 at all
periods and all information sets

I Thus, the equilibrium outcome is simply the repetition of the
unique NE of the stage game

I This holds more generally when the stage game has a unique
NE

I Whenever the stage game has a unique NE, then the only
SPNE of a finite horizon repeated game with that stage
game is the repetition of the stage game NE
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Theorem
Suppose that the stage game G has exactly one NE,
(a∗1, a

∗
2, . . . , a

∗
n). Then for any δ ∈ (0, 1] and any T , the T -times

repeated game has a unique SPNE in which all players i play a∗i at
all information sets.



I The basic idea of the proof for this proposition is exactly the
same that we saw in the repeated prisoner’s dilemma

I All past payoffs are sunk

I In the last period, the incentives of all players are exactly the
same as if the game were being played once

I Thus all players must play the stage game Nash equilibrium
action regardless of the history of play up to that point

I But then we can induct

I Knowing that the stage game Nash equilibrium is going to be
played tomorrow, at any information set, we can ignore the
past payoffs

I We concentrate just on the payoffs in the future. Thus in
period T − 1, player i simply wants to maximize:

max
ai∈Ai

δT−2ui (ai , a
T−1
−i ) + δT−1ui (a

∗).
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I What player i plays today has no consequences for what
happens in period T since we saw that all players will play a∗

no matter what happens in period T − 1

I So, the maximization problem above is the same as:

max
ai∈Ai

ui (ai , a
T−1
−i ).

I Thus again, for this to be a Nash equilibrium, we need
aT−11 = a∗1, . . . , a

T−1
n = a∗n.

I Following exactly this induction, we can conclude that every
player must play a∗i at all times and all histories
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