Mauricio Romero

(ロ)、(型)、(E)、(E)、 E) の(()

Cournot n-firms

Bertrand n-firms

Cournot n-firms

Bertrand n-firms

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Single-period non-cooperative Cournot game: unique NE

Single-period non-cooperative Cournot game: unique NE

 Firms produce higher-output, receive lower profits than if they cooperated (prisoners' dilemma)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Single-period non-cooperative Cournot game: unique NE

 Firms produce higher-output, receive lower profits than if they cooperated (prisoners' dilemma)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Can cooperation occur in multi-period games?

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm *i*'s profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm *i*'s profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Firm *i*'s best-response function: $BR_i(q_{-i}) = \frac{a-c}{2b} - \frac{q_1 + \dots + q_N - q_i}{2}$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm *i*'s profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Firm *i*'s best-response function: $BR_i(q_{-i}) = \frac{a-c}{2b} - \frac{q_1 + \dots + q_N - q_i}{2}$

Symmetric NE quantities:
$$q^* = \frac{(a-c)}{(N+1)b}$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Firm *i*'s best-response function: $BR_i(q_{-i}) = \frac{a-c}{2b} - \frac{q_1 + \dots + q_N - q_i}{2}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Symmetric NE quantities: $q^* = \frac{(a-c)}{(N+1)b}$

• Market price: $p^* = \frac{1}{(N+1)}a + \frac{N}{(N+1)}c$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Firm *i*'s best-response function: $BR_i(q_{-i}) = \frac{a-c}{2b} - \frac{q_1 + \dots + q_N - q_i}{2}$

Symmetric NE quantities:
$$q^* = \frac{(a-c)}{(N+1)b}$$

• Market price:
$$p^* = \frac{1}{(N+1)}a + \frac{N}{(N+1)}c$$

• Per-firm profits:
$$\pi^* = \frac{(a-c)^2}{(N+1)^2b}$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Firm *i*'s best-response function: $BR_i(q_{-i}) = \frac{a-c}{2b} - \frac{q_1 + \dots + q_N - q_i}{2}$

Symmetric NE quantities: $q^* = \frac{(a-c)}{(N+1)b}$

• Market price: $p^* = \frac{1}{(N+1)}a + \frac{N}{(N+1)}c$

• Per-firm profits:
$$\pi^* = \frac{(a-c)^2}{(N+1)^2b}$$

▶ Note: as *N* grows large, $p^* \rightarrow c$ and $\pi^* \rightarrow 0$, as in PC

- If firms cooperate: $\max_q = Nq(a b(Nq) c) \rightarrow q^c = \frac{(a-c)}{2bN}$
- ▶ $p^c = \frac{a+c}{2}$, higher than p^* .

•
$$\pi^c = \frac{(a-c)^2}{4bN}$$
, higher than π^* .

► But why can't each firm do this? Because NE condition is not satisfied: $\max_{q_i} \pi_i = \max_{q_i} q_i \left(a - b\left((N-1)\frac{(a-c)}{2bN} + q_i\right) - c\right) \rightarrow q^d = \frac{(a-c)(n+1)}{4Nb}$

• So the profits from deviating are:
$$\pi^d = \frac{(n+1)^2(a-c)^2}{16bn^2}$$

What if we repeat the game?

2-period Cournot game

Second period: unique NE in these subgames (play the NE)

► First period: Given that NE in t = 2 → unique SPNE is to play the NE of the stage game in both periods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What about 3 periods?

What about N periods?

<ロト < 団ト < 団ト < 団ト < 団ト 三 のへで</p>

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - \blacktriangleright Discount rate $\delta \in [0,1],$ which measures how "patient" a firm is

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is
 - Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$
 - Consider the following strategy:

Firm *i* cooperates as long as it observes all other firms cooperating. If another firm cheats, firm *i* produces the Cournot-Nash quantity every period hereafter: **Nash reversion** (or "grim strategy")

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is
 - Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$
 - Consider the following strategy:
 - 1. In period t, firm i plays $q_{it} = q^c$ if $q_{-i,t-1} = q^c$.

item Play
$$q^*$$
 if $q_{-i,t-1} \neq q^c$

Firm *i* cooperates as long as it observes all other firms cooperating. If another firm cheats, firm *i* produces the Cournot-Nash quantity every period hereafter: **Nash reversion** (or "grim strategy")

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider firm *i* (symmetric for all other firms) There are two relevant subgames for firm *i*

 After a period in which cheating (either by himself or the other firm) has occurred

Proposed strategy prescribes playing q* forever (by all firms)

This is NE of the subgame: playing q* is a best-response to other firms playing q*

This satisfies SPE conditions.

After a period when no cheating has occurred

- Proposed strategy prescribes cooperating and playing q^c, with discounted PV of payoffs = π^c/(1 − δ)
- ► The best other possible strategy is to play BR₁(q^c_{-i}) ≡ q^d_i this period, but then be faced with q₂ = q^{*} forever

- This yields discounted $PV = \pi^d + \delta(\pi^*/(1-\delta))$
- ▶ In order for q_c to be NE of this subgame, require $\pi^c/(1-\delta) > \pi^d + \delta(\pi^*/(1-\delta))$

•
$$\frac{(a-c)^2}{4bN(1-\delta)} > \frac{(n+1)^2(a-c)^2}{16bn^2} + \delta\left(\frac{(a-c)^2}{(N+1)^2b(1-\delta)}\right)$$

 $\pi^{c}/(1-\delta) > \pi^{d} + \delta(\pi^{*}/(1-\delta))$

$$\blacktriangleright \delta > \frac{(n+1)^2}{n^2+6b+1}$$

This value increases with n (i.e., collusion is harder to maintain as the number of firms grows)

Cournot n-firms

Bertrand n-firms

Cournot n-firms

Bertrand n-firms

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Single-period non-cooperative Bertrand game (with continuous prices): unique NE

Single-period non-cooperative Bertrand game (with continuous prices): unique NE

 Firms produce higher-output, receive lower profits than if they cooperated (prisoners' dilemma)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Single-period non-cooperative Bertrand game (with continuous prices): unique NE

 Firms produce higher-output, receive lower profits than if they cooperated (prisoners' dilemma)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Symmetric NE prices:
$$p^* = c$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

• Market price:
$$p^* = c$$

• Industry inverse demand curve: $p = a - b(q_1 + q_2 + \cdots + q_N)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Firm i's profit:
$$\pi_i = q_i(a - b(q_1 + q_2 + \cdots + q_N) - c)$$

Symmetric NE prices:
$$p^* = c$$

- Market price: $p^* = c$
- Per-firm profits: $\pi^* = 0$

• If firms cooperate: $\max_p = p \frac{a-p}{b} \rightarrow p = \frac{a+c}{2}$

►
$$q^c = \frac{a-c}{2bN}$$

•
$$\pi^{c} = \frac{(a-c)^{2}}{4bN}$$
, higher than π^{*} .

But why can't each firm do this? Because NE condition is not satisfied. If everyone else plays p = a+c/2, I charge ε less, and essentially get the monopoly earnings all for my self

So the profits from deviating are:
$$\pi^d = \frac{(a-c)^2}{4b}$$

What if we repeat the game?

2-period Cournot game

Second period: unique NE in these subgames (play the NE)

► First period: Given that NE in t = 2 → unique SPNE is to play the NE of the stage game in both periods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about 3 periods?

What about N periods?

・ロト・日本・ヨト・ヨー うへの

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - \blacktriangleright Discount rate $\delta \in [0,1],$ which measures how "patient" a firm is

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is
 - Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$
 - Consider the following strategy:

Firm *i* cooperates as long as it observes all other firms cooperating. If another firm cheats, firm *i* produces the Cournot-Nash quantity every period hereafter: **Nash reversion** (or "grim strategy")

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Infinitely repeated game
- Are there SPNE of this game in which both firms play q^c (cooperate) each period?
 - ▶ Discount rate $\delta \in [0, 1]$, which measures how "patient" a firm is
 - Property: $x + \delta x + \delta^2 x + \dots + \delta^n x + \dots = \frac{x}{1-\delta}$
 - Consider the following strategy:
 - 1. In period t, firm i plays $q_{it} = q^c$ if $q_{-i,t-1} = q^c$.

item Play
$$q^*$$
 if $q_{-i,t-1} \neq q^c$

Firm *i* cooperates as long as it observes all other firms cooperating. If another firm cheats, firm *i* produces the Cournot-Nash quantity every period hereafter: **Nash reversion** (or "grim strategy")

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider firm *i* (symmetric for all other firms) There are two relevant subgames for firm *i*

 After a period in which cheating (either by himself or the other firm) has occurred

Proposed strategy prescribes playing q* forever (by all firms)

This is NE of the subgame: playing q* is a best-response to other firms playing q*

This satisfies SPE conditions.

After a period when no cheating has occurred

- Proposed strategy prescribes cooperating and playing q^c, with discounted PV of payoffs = π^c/(1 − δ)
- ► The best other possible strategy is to play BR₁(q^c_{-i}) ≡ q^d_i this period, but then be faced with q₂ = q^{*} forever

- This yields discounted $PV = \pi^d + \delta(\pi^*/(1-\delta))$
- ▶ In order for q_c to be NE of this subgame, require $\pi^c/(1-\delta) > \pi^d + \delta(\pi^*/(1-\delta))$

•
$$\pi^{c}/(1-\delta) > \pi^{d} + \delta(\pi^{*}/(1-\delta))$$

• $\frac{(a-c)^{2}}{4bN(1-\delta)} > \frac{(a-c)^{2}}{4b} + \delta(1-\delta)$

►
$$\delta > \frac{n-1}{n}$$

This value increases with n (i.e., collusion is harder to maintain as the number of firms grows)

 $\delta))$