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I The answer is going to be yes in general

I We will show that the equilibrium is a “fix point” of a certain
function

I Intuitively, if we have a function that adjusts prices (higher
price is demand > supply), then the equilibrium is where this
function stops updating
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There is even a theorem for this:

Theorem
For any function f : [0, 1]→ [0, 1] that is continuous, there exists
an x∗ ∈ [0, 1] such that f (x∗) = x∗



And a more general version!

Theorem
For any function f : 4L−1 →4L−1 that is continuous, there exists
a point p∗ = (p∗1 , p

∗
2 , ..., p

∗
L) such that

f (p∗) = p∗.

where

4L−1 = {(p1, p2, ..., pL) ∈ RL
+ |

L∑
l=1

pl = 1}



What was the goal again?

I Prove the existence of a general equilibrium in a market

I We will show that the equilibrium is a “fix point” of a certain
function

I Intuitively, if we have a function that adjusts prices (higher
price if demand > supply), then the equilibrium is where this
function stops updating
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Excess demand

Let us define the excess demand by:

Z (p) = (Z1(p),Z2(p), ...,ZL(p)) =
I∑

i=1

x∗i (p)−
I∑

i=1

w i

since x∗i (p) is the demand (i.e., consumers are already
maximizing) then we have the following result:

Remark
p ∈ Rn

++ is a competitive equilibrium if and only if Z (p) = 0
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Excess demand

Z(p) has the following properties

1. Is continuous in p

2. Is homogeneous of degree zero

3. p · Z (p) = 0 (this is equivalent to Walra’s law)

— Think
about this!
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Excess demand

We said we want to update prices in a “logical” way. If excess
demand is positive, then increase prices...

p′ = p + Z (p)

But what if p′ < 0? Ok then

T (p) =
1∑L

i=1 pl + max (0,Zl(p))
(p1 + max (0,Z1(p)) ,

max (0,Z2(p)) , . . . ,

pL + max (0,ZL(p)))



Excess demand

We said we want to update prices in a “logical” way. If excess
demand is positive, then increase prices...

p′ = p + Z (p)

But what if p′ < 0? Ok then

T (p) =
1∑L

i=1 pl + max (0,Zl(p))
(p1 + max (0,Z1(p)) ,

max (0,Z2(p)) , . . . ,

pL + max (0,ZL(p)))



Excess demand

I T is continuous

I Thus we can apply the fix point theorem

I Therefore there exists a p∗ such that T (p∗) = p∗

I Then Z (p∗) = 0

(why?)
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So when does it break down?

I We needed demand to be continuous!



Weird case - no equilibrium

uA(xA, yA) = min(xA, yA)

uB(xB , yB) = max(xB , yB)

ωA = (1, 1)

ωB = (1, 1)

I prices are positive (why?)

I normalize px = 1

I if py < 1 then B wants to demand as much of y as possible
Y b = 1

py
+ 1

I if py > 1 then B wants to demand as much of x as possible
X b = py + 1

I if py = 1 then B either demands two units of X or two units
of Y , but A demands at least one unit of each good
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Is the equilibrium unique?

We have seen it is not
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First welfare theorem

Theorem
Consider any pure exchange economy. Suppose that all consumers
have weakly monotone utility functions. Then if (x∗, p) is a
competitive equilibrium, then x∗ is a Pareto efficient allocation.



Proof

By contradiction:

Assume that
(
p,
(
x1, x2, ..., x I

))
is a competitive equilibrium but

that
(
x1, x2, ..., x I

)
is not Pareto efficient

Then there is an allocation
(
x̂1, x̂2, ..., x̂ I

)
such that

I is feasible

I pareto dominates
(
x1, x2, ..., x I

)
In other words:

1.
∑I

i=1 x̂
i =

∑I
i=1 w

i

2. For all i , ui
(
x̂ i
)
> ui

(
x i
)

3. For some i∗, ui
∗ (

x̂ i
∗)

> ui
∗ (

x i
∗)
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Proof

By definition of an equilibrium we have that

I Condition 3 in the previous slide implies p · x̂ i∗ > p · w i∗

I Otherwise, why didn’t i∗ pick x̂ i
∗

to begin with

I Condition 2 in the previous slide implies that for all i ,
p · ŵ i > p · x i

Adding over all agents we get:

I∑
i=1

p · x̂ i >
I∑

i=1

p · w i

Which in turn implies

p ·
I∑

i=1

x̂ i > p ·
I∑

i=1

w i

Which contradicts what Condition 1 in the previous slide implies.
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I Great! Since we motivated Pareto efficiency as the bare
minimum, its nice to know that the market achieves it

I This may be useful in calculating competitive equilibrium...
we only have to search within Pareto efficient allocations

I How about the opposite?

I Maybe we “like” one Pareto allocation over another (for
bio-ethic considerations)

I Can any Pareto efficient allocation can be sustained as the
outcome of some competitive equilibrium?

I Not in general... but what if we allow for a redistribution of
resources?
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Second welfare theorem

Theorem
Given an economy E =

〈
I,
(
ui ,w i

)
i∈I

〉
where all consumers have

weakly monotone, quasi-concave utility functions. If
(
x1, x2, ..., x I

)
is a Pareto optimal allocation then there exists a redistribution of
resources

(
ŵ1, ŵ2, ..., ŵ I

)
and some prices p = (p1, p2, ..., pL) such

that:

1.
∑I

i=1 ŵ
i =

∑I
i=1 w

i

2.
(
p,
(
x1, x2, ..., x I

))
is a competitive equilibrium of the

economy E =
〈
I,
(
ui , ŵ i

)
i∈I

〉



I Great, you don’t need to close the markets to achieve a
certain Pareto allocation

I You just need to redistribute the endowments

I Ok... but what re-distribution should I do to achieve a certain
outcome? No idea

I Ok... but how can we do this redistribution? Not taxes, since
they produce dead-weight loss
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I In contrast to the first welfare theorem, we require an
additional assumption that all utility functions are
quasi-concave.

I What if they are not? consider the following:

uA(x , y) = max{x , y}
uB(x , y) = min{x , y}

ωA = (1, 1)

ωB = (1, 1)

In this example, all points in the Edgeworth Box are Pareto
efficient. However we cannot obtain any of these points as a
competitive equilibrium after transfers.
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