Lecture 7: Monopoly

Mauricio Romero

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

- Firm is faced a problem like the following:

$$
\max _{K, L} p_{x} f_{x}(L, K)-w L-r K .
$$

- The firm's choice of L and K does not affect the prices p, w, r
- This is called price-taking behavior
- Justified if the the market is composed of many small firms
- In many markets there is a single firm
- Since supply is completely controlled by the firm, it can use this in its favor
- Profit maximization condition,

$$
\max _{K, L} p f_{x}(K, L)-w L-r K
$$

- Profit maximization condition,

$$
\max _{K, L} p f_{x}(K, L)-w L-r K .
$$

- If

$$
c(x)=\min _{K, L} w L+r K \text { such that } f_{x}(K, L)=x
$$

then the above is equivalent to:

$$
\max _{x} p x-c(x) .
$$

- When firm controls supply, then:

$$
\max _{x} \mathbf{p}(\mathbf{x}) x-c(x)
$$

- When firm controls supply, then:

$$
\max _{x} \mathbf{p}(\mathbf{x}) x-c(x)
$$

- Consumers willingness to pay is given by the demand function
- When firm controls supply, then:

$$
\max _{x} \mathbf{p}(\mathbf{x}) x-c(x)
$$

- Consumers willingness to pay is given by the demand function
- $p(x)$ is the demand function
- We can also represent the problem as:

$$
\max _{p} p q(p)-c(q(p))
$$

- $q(p)$ is the inverse demand function

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Elasticities

- Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$

Elasticities

- Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$

$$
\frac{d R}{d q}=p(q)+q \frac{d p}{d q}(q)=p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right)
$$

Elasticities

- Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$

$$
\begin{aligned}
& \frac{d R}{d q}=p(q)+q \frac{d p}{d q}(q)=p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right) \\
& \frac{d R}{d q}>0 \Longleftrightarrow 1>-\frac{1}{\varepsilon_{q, p}} \Longleftrightarrow \varepsilon_{q, p}<-1 .
\end{aligned}
$$

Elasticities

- Revenue: $\mathrm{R}(\mathrm{q})=\mathrm{p}(\mathrm{q}) \mathrm{q}$

$$
\begin{aligned}
& \frac{d R}{d q}=p(q)+q \frac{d p}{d q}(q)=p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right) \\
& \frac{d R}{d q}>0 \Longleftrightarrow 1>-\frac{1}{\varepsilon_{q, p}} \Longleftrightarrow \varepsilon_{q, p}<-1
\end{aligned}
$$

- $\varepsilon_{q, p}$ is the elasticity of demand with respect to price

Elasticities

- If $\varepsilon_{q, p} \in(-1,0)$, the demand is inelastic
- An increase in price leads a small decrease in demand
- An increase in quantity leads to a big decrease in price
- If $\varepsilon_{q, p}<-1$, then demand is elastic
- An increase in price leads a big decrease in demand
- An increase in quantity leads to a small decrease in price

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

$$
\frac{d q}{d p} \frac{p}{q}=\kappa<0
$$

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

$$
\frac{d q}{d p} \frac{p}{q}=\kappa<0
$$

$$
\frac{1}{q} \frac{d q}{d p}=\kappa \frac{1}{p} \Longrightarrow \frac{d}{d p} \log q(p)=\frac{d}{d p} \log p^{\kappa}
$$

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

$$
\frac{d q}{d p} \frac{p}{q}=\kappa<0
$$

$$
\frac{1}{q} \frac{d q}{d p}=\kappa \frac{1}{p} \Longrightarrow \frac{d}{d p} \log q(p)=\frac{d}{d p} \log p^{\kappa}
$$

- By the fundamental theorem of calculus:

$$
\log q(p)=C+\log p^{\kappa}
$$

Elasticities

- What kind of demand functions have constant elasticities of demand with respect to price?
- Suppose that the demand function is of constant elasticity κ

$$
\frac{d q}{d p} \frac{p}{q}=\kappa<0
$$

$$
\frac{1}{q} \frac{d q}{d p}=\kappa \frac{1}{p} \Longrightarrow \frac{d}{d p} \log q(p)=\frac{d}{d p} \log p^{\kappa}
$$

- By the fundamental theorem of calculus:

$$
\log q(p)=C+\log p^{\kappa}
$$

- $q(p)=e^{C} p^{\kappa}$ or $q(p)=A p^{\kappa}$ for some A.

Elasticities

Whenever the demand function has constant elasticity κ

- $q(p) A p^{\kappa}$ for some $A>0$.
- Equivalently,

$$
p(q)=\left(\frac{q}{A}\right)^{1 / \kappa}
$$

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

Lecture 7: Monopoly

Introduction

Elasticities

Monopoly

- We want to study the problem:

$$
\max _{q} R(q)-c(q)
$$

- We want to study the problem:

$$
\max _{q} R(q)-c(q)
$$

- The first order condition tells us:

$$
\frac{d R}{d q}=\frac{d c}{d q} \Longrightarrow p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right)=\frac{d c}{d q}>0 .
$$

- We want to study the problem:

$$
\max _{q} R(q)-c(q)
$$

- The first order condition tells us:

$$
\frac{d R}{d q}=\frac{d c}{d q} \Longrightarrow p(q)\left(1+\frac{1}{\varepsilon_{q, p}}\right)=\frac{d c}{d q}>0
$$

- This implies

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Longleftrightarrow \varepsilon_{q, p}<-1
$$

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Longleftrightarrow \varepsilon_{q, p}<-1 .
$$

- A monopoly firm always produces at a point where demand is elastic

$$
1+\frac{1}{\varepsilon_{q, p}}>0 \Longleftrightarrow \varepsilon_{q, p}<-1 .
$$

- A monopoly firm always produces at a point where demand is elastic
- If the firm produced at a point where demand was inelastic
- At such a point $\frac{d R}{d q}<0$
- By reducing quantity (or raising the price) it could increase revenue and decrease costs simultaneously
- This strictly increases the profits

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}
$$

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}>\frac{d c}{d q}
$$

- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}>\frac{d c}{d q}
$$

- The firm always sets a price that is strictly above marginal cost
- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}>\frac{d c}{d q}
$$

- The firm always sets a price that is strictly above marginal cost
- There is a mark-up above marginal cost at the profit maximizing price
- We can simplify to:

$$
p(q)=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}
$$

- Since $\varepsilon_{q, p}<-1$, then

$$
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}>\frac{d c}{d q}
$$

- The firm always sets a price that is strictly above marginal cost
- There is a mark-up above marginal cost at the profit maximizing price
- The amount produced q is below the quantity where $p=M C$.
- The above analysis already illustrates an important point against monopolies
- The above analysis already illustrates an important point against monopolies
- Both consumer surplus and total surplus is less than is socially optimal
- The above analysis already illustrates an important point against monopolies
- Both consumer surplus and total surplus is less than is socially optimal
- Thus the pricing policies used by monopolies are inefficient, leading to what is called "dead-weight loss"

Costs and

Costs and

Revenue | $2 \ldots$. and then the demand |
| :---: |
| curve shows the price |
| consistent with this quantity. The intersection of the |
| marginal-revenue curve |
| and the marginal-cost |
| curve determines the |
| profit-maximizing |
| puantity ... |

Costs and

Revenue | $2 \ldots$. and then the demand |
| :---: |
| curve shows the price |
| consistent with this quantity. The intersection of the |
| marginal-revenue curve |
| and the marginal-cost |
| curve determines the |
| profit-maximizing |
| puantity ... |

Costs and

- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\max _{p} p q(p)-c(q(p))
$$

- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{gathered}
\max _{p} p q(p)-c(q(p)) . \\
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
\end{gathered}
$$

- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{gathered}
\max _{p} p q(p)-c(q(p)) \\
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
\end{gathered}
$$

- Has a solution if and only if $\kappa<-1$
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{gathered}
\max _{p} p q(p)-c(q(p)) \\
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
\end{gathered}
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{gathered}
\max _{p} p q(p)-c(q(p)) \\
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q} .
\end{gathered}
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- If marginal costs are constant at c
- Demand function has constant elasticity of demand $\left(q(p)=A p^{\kappa}\right)$

$$
\begin{gathered}
\max _{p} p q(p)-c(q(p)) \\
p=\frac{1}{1+\frac{1}{\varepsilon_{q, p}}} \frac{d c}{d q}=\frac{1}{1+\frac{1}{\kappa}} \frac{d c}{d q}
\end{gathered}
$$

- Has a solution if and only if $\kappa<-1$
- If $\kappa \geq-1$, then the firm always prefer to increase the price (no solution)
- If marginal costs are constant at c

$$
p=\frac{c}{1+\frac{1}{\kappa}} \Longrightarrow q(p)=A\left(\frac{c}{1+\frac{1}{\kappa}}\right)^{\kappa}
$$

If profits are positive, why aren't more firms entering the market?

- Natural monopoly (Microsoft)
- Patents
- Political Lobbying: Televisa, Azteca, etc.
- Regulation (Moody and S \& P's)
- Demand externalities
- Classic network externalities (Microsoft): Microsoft Word and Windows are only valuable if a lot of consumers use it.
- Two-sided markets (Ticketmaster or Uber): consumers value these markets only if there is enough supply of tickets. Similarly suppliers only value these markets if there is demand to meet the supply.

