Lecture12

Thursday, March 26, 2020 2:58 PM
$\begin{array}{r}\text { 图 } \\ \text { Leturel } \\ \hline\end{array}$

Lecture 12: Game Theory // Nash equilibrium
Mauricio Romero

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equill brium
Some examples
Relationship to dominance
Examples

- Consider the following game among 100 people. Each individual selects a number s_{i}, between 20 and 60 .
e of the number selected by the other 99 people. i.
$-i=\sum_{i \neq i} \frac{s_{9}}{}$.
- The utility function of the individual i is $u_{i}\left(s_{i}, s_{-i}\right)=100-\left(s_{i}-\frac{3}{2} a_{-i}\right)^{2}$ $\xrightarrow{\longrightarrow}$

Beauty contest

- Each individual maximizes his utility FOC:

$$
-2\left(s_{i}-\frac{3}{2} a-i\right)=0
$$

Beauty contes

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a-i\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others

Beauty contest

- Each individual maximizes his utility, FOC:

$$
-2\left(s_{i}-\frac{3}{2} a-i\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the

| Beauty contest |
| :--- | :--- |
| \rightarrow Each individual maximizes his utility, FOC: |
| $-2\left(s_{i}-\frac{3}{2} a-i\right)=0$ |

Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others

- That is they would like to choose $s_{i}=\frac{3}{2}$ a
- but $a_{-i} \in[20,60]$

Beauty contes

- Each individual maximizes his utility, FOC

$$
-2\left(s_{i}-\frac{3}{2} a_{-i}\right)=0
$$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others
- That is they would like to choose $s_{i}=\frac{3}{2}$ a
- but a $_{-i} \in[20,60]$
- Therefore $s_{i}=20$ is dominated by $s_{i}=30$

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)

Beauty contes

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., $a-i \in[30,60]$)
Despecs, Sic $[20,60] \rightarrow a-i \in[20,60]$

Doolnado

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number
- Playing a number between 30 and 45 (not including) would be strictly dominated
$-\begin{aligned} & \text { Playing a number between } 30 \text { and } 45 \text { (not including) would be strictly dominated } \\ & \text { by playing } 45\end{aligned}$

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (ie., a-i $i[30,60]$)
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- Knowing this, all individuals believe that everyone else will select a number
between 45 and 60 (ie., $a-i \in[45,60] \rightarrow 1,5 C_{-i} \in[67.5,90]$

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)

Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (ie., $a-i \in[30,60]$)

- Playing a number between 30 and 45 (not including) would be strictly dominate by playing 45
- Knowing this, all individuals believe that everyone else will select a number
between 45 and 60 (ie., $a_{-i} \in[45,60]$)
- 60 would dominate any other selection and therefore all the players select 60 .

Beauty contest

- The same goes for any number between 20 (inclusive) and 30 (not included)

Knowing this, all individuals believe that everyone else will select a number
tween 30 and 60 (ie., $a_{-i} \in[30,60]$

- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
everyone else will select a numb between 45 and 60 (ie., $a_{-i} \in[45,60]$)
- 60 would dominate any other selection and therefore all the players select 60

[^0]NI
$\operatorname{SiE}[0,100]$
$U_{i}=-\left(s_{i}-\frac{2}{3} a_{-i}\right)^{2}$
$a_{i} \in[0,100] \longrightarrow \frac{2}{3} a_{-i} \in(0,66.6]$
$\frac{66.6 \gg(66.6,100]^{3}}{S_{i} \in[0,66.6]}$
$\rightarrow a_{-i \in}[0,66.6] \rightarrow \frac{2}{3} a_{-i} \in[0,44.4]$
$44.4 \gg(44.4,100)$
$\rightarrow \operatorname{SiE}[0,44.4]$

- Solución $S_{i}=0 \quad \forall i$

Lecture 12: Game Theory // Nash equilibrium

ominance
Weakly dominated strategies
Nash equilibrium
Some examples
Rellationshin to dominance
Examples
Cournot Competition
Cartels

S	了2		
		a	b
	A	3,4	4,3
	B	5,3	3,5
	C	5,3	4,3

- There is no strictly dominated strategy

ζ	32		
		a	b
	A	3,4	4,3
	${ }_{B}^{B}$	5,3	3,5
	C	5,3	4,3

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B

```
\begin{tabular}{|c|c|c|}
\hline A & a & b \\
\hline B & 4,4 & 4,3 \\
\hline & 5,3 & 3,5 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & 3,4 & b, \\
\hline B & 5,3 & 3,5 \\
\hline C & 5,3 & 4,3 \\
\hline
\end{tabular}
```

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B
- It's tempting to think player 1 would never play B

```
|
A
A
```

- There is no strictly dominated strategy
- However, C always gives at least the same utility to player 1 as B
- It's tempting to think player 1 would never play C
- However, if player 1 is sure that player two is going to play a he would be completely indifferent between playing B or C

Definition
s_{i} weakly dominates ssid if for all opponent pure strategy profiles, $s_{-i} \in S_{-i}$ $u_{i}\left(s_{i}, s_{-i}\right)\left(u_{i} u_{i}^{\prime}, s_{i-i}^{\prime}\right)$
and there is at least one opponent strategy profile $s_{-i}^{\prime \prime} \in S_{-i}$ for which
$u_{i}\left(s_{i}, s_{-i}^{\prime \prime} \sum_{i=}\left(s_{i}^{\prime}, s_{-i}^{\prime \prime}\right)\right.$.

- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- There is a problem, and that is that the order in which we eliminate the strategies matters
- If we eliminate B (C dominates weakly), then a weakly dominates b and we caa iminate b and therefore player 1 would never play A . This leads to the result (c, a).

- If we eliminate B (C dominates weakly, then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result
(c,a).
If on the other hand, we notice that A is also weakly dominated by C then we can eliminate it in the first round, and this would eliminate a in t
therefore B would be eliminated. This would result in (C, b).

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Remember the definition of competitive equilibrium in a market economy
Definition
A competitive equilibrium in a market economy is a vector of prices and baskets \times such that: 1) x_{i} maximizes the utility of each individual given the price vector i.e.
$x_{i}=\arg \max _{p \operatorname{cotox} \leq x_{j}} u\left(w_{i}\right)$
2) the markets empty.
$\sum_{i} x_{i}=\sum_{i} w_{i}$

1) means that given the prices, individuals have no incentive to demand a different amount

- 1) means that given the prices, individuals have no incentive to demand a different amount
- The idea is to extend this concept to strategic situations

Best response

We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that
maximize her utility given that other individuals follow the strategy profile s
Formally,

Best response
We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that
naximize her utility given that other individuals follow the strategy profile s.
Definition
Given a strategy profile of opponents s_{-j}, we can define the best response of player i
Given a strategy profile of opponents s-i, we can define the best respa
$s_{i} \in B R_{i}\left(s_{i}\right)$ if and only if $u_{i}\left(s_{i}, s_{i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in s_{i}$
\rightarrow Tes un (onjunto (no Necesariamente de Tamaño 1)

Best response
We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that
We denote $B R_{i}\left(s_{i} i\right)$ (best response) as the set of strategies of individual i th
maximize her utility given that other individuals follow the strategy profile s
Formally,
Given a strategy profile of opponents s_{-i}, we can define the best response of player i
$\xrightarrow{B R_{i}\left(\frac{s}{-i}\right)=\arg \max _{s_{i} \in S_{i}} u_{i}\left(s_{i}^{\prime}, s_{-i}\right) .}$ FiSO

- $s_{i} \in B R_{i}\left(s_{-i}\right)$ if and only if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in S_{i}$
- There could be multiple strategies in $B R_{i}\left(s_{-i}\right)$ but all such strategies give the same utility to player i if the opponents are indeed playing according to $s-i$

Nash equilibrium

Definition
Suppose that we have a game $\left(\Omega=\{1,2, \ldots n\}, \widehat{S_{1}, \ldots, S_{n}}, \stackrel{\left(u_{1}, \ldots, u_{n}\right.}{)}\right)$. Then a

$\begin{array}{ccc}\text { for every } s_{i} \in S_{i}\end{array}=\left(s_{1}, \ldots, s_{n}\right)$ is a pure strategy Nash equilibrium if for every i and TOD
$S_{i}^{*} \underset{B R_{i}\left(S_{-i}\right)}{M_{-i}^{*}\left(S_{-i}\right)} \forall i$

Nash equilibrium

Suppose that we have a game $\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every i_{1} $s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has
unilateral incentives to deviate

Nash equilibrium

Suppose that we have a game $\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{n}\right)$ is a pure strategy Nash equilibrium if for every $s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there

Nash equilibrium

Suppose that we have a game ($I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}$). Then a strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{\prime}\right)$ is a pure strategy Nash equilibrium if for every $s_{i}^{*} \in B R_{i}\left(s_{i}^{*}\right)$

- Analogous to that of a competitio unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there
- This is a concept of stability, but there is no way to ensure, or predict, that the game will reach this equilibrium

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Noch newilibrian
Some examples
Relationship to dominance
Fxamples

Beauty contest

- Consider the following game among 2 people. Each individual selects a number s. between 20 and 60 .

Beauty contest

- Consider the following game among 2 people. Each individual selects a number $s_{\text {i }}$, between 20 and 60 .
- Let s_{-i} be the number selected by the other individual.
- Consider the following game among 2 people. Each individual selects a number
s_{i}, between 20 and 60 .

$$
\begin{gathered}
U_{i}=100-\left(S_{i}-\frac{3}{2} S_{-i}\right)^{2} \\
\frac{U_{i}}{\partial S_{i}}=-2\left(S_{i}-\frac{3}{2} S_{-i}\right)=0 \\
S_{i}=\frac{3}{2} S_{-i}
\end{gathered}
$$

$$
\left.S_{-i e}[20,60)\right]
$$

Beauty contest

$$
S_{C \in}[20,60]
$$

The best response of an individual is given by
$s_{i}\left(s_{-i}\right)^{*}=\left\{\begin{array}{cc\|}\frac{3}{3} s_{-i} & \text { if } s_{-i} \leq 40 \\ 60 & \text { if } s_{-i}>40\end{array}\right.$

The Nash equilibrium is where both BR functions intersect (ie., when both play 60)

Prisoner's dilemma

	C	C
C	5,5	0,10
$N C$	10,0	2,2

The best response functions are:

$$
B R_{i}\left(s_{-i}\right)= \begin{cases}N C & \text { if } s_{-i}=C \\ N C & \text { if } s_{-i}=N C\end{cases}
$$

The Nash equilibrium is where both $B R$ functions intersect (ie., when both play $N C$, .e., $(N C, N C)$)

Battle of the sexes

	G	P
G	2.1	0.0
P	0.0	

G	$\mathbf{2}, \mathbf{1}$	0,0
P	0,0	1,2

$B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { if } s_{-i}=G \\ P & \text { if } s_{-i}=P\end{cases}$

Battle of the sexes

$$
\begin{aligned}
& \begin{array}{|c|c|c|}
\hline & G & P \\
\hline G & \underline{2}, \underline{1} & 0,0 \\
\hline & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline \mathrm{G} & \underline{2}, \mathbf{1} & \mathrm{P}, 0 \\
\hline \mathrm{P} & 0,0 & \underline{1,2} \\
\hline
\end{array} \\
& B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { if } s_{-i}=G \\
P & \text { if } s_{-i}=P\end{cases}
\end{aligned}
$$

Thus, (G, G) y (P, P) are both Nash equilibrium

Matching pennies (Pares o Nones) - Simultaneous
$\int z$

| | 1 | 2 |
| ---: | :--- | :---: | :---: |
| 1 | $(1000,-1000)$ | $(-1000,1000)$ |
| 2 | $(-1000,1000)$ | $(1000,-1000)$ |

Matching pennies (Pares o Nones) - Simultaneous


```
    l
```

Matching pennies (Pares o Nones) - Simultaneous
$\left.\qquad \begin{array}{|c|c|c|}\hline & 1 & 1 \\ \hline & (1000,-1000) & 2 \\ 2 & (-1000,1000)\end{array}\right)\left(\begin{array}{l}(1000,1000,-1000) \\ \hline\end{array}\right.$
$B R_{1}\left(s_{2}\right)= \begin{cases}1 & \text { if } s_{2}=1 \\ 2 & \text { if } s_{2}=2\end{cases}$
$B R_{2}\left(s_{1}\right)= \begin{cases}2 & \text { if } s_{1}=1 \\ 1 & \text { if } s_{2}=2\end{cases}$
There is no Nash equilibrium in pure strategies

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nosh equilitrium
Some example
Relationship to dominance
Examples

Nash equilibrium survive IDSDS

Theorem
Every Nash equilibrium survives the iterative elimination of strictly dominated strategies

Proof
By contradiction:

- Suppose it is not tru

Proof
y contradiction:

- Suppose it is not true

Suppose it is not true
Then we must have eliminated some strategy in the Nash equilibrium $s^{*}=\left(S_{1, \ldots}^{*}, \ldots, S_{N}^{\alpha}\right) ~$

Proof

- Suppose it is not
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s^{*} of individual i^{*}

Proof
By contradiction:

- Suppose it is not tru
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual $i \quad{ }^{\ell}$ - It must have been that

By contradiction:

- Suppose it is not true

Then we must have eliminated some strategy in the Nash equilibrium s^{*}

- Lets zoom in in the round where we first eliminate a strategy that ispart of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that
- In particular

Proof

- Then we must have eliminated some strategy in the Nash equilibrium s
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{*}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-}
$$

- In particular
$u_{i}\left(s_{i}^{*}, s_{-i} s_{i}\right)<u_{i}\left(s_{i}, s_{i=}^{s_{i}^{*}}\right)$
- But this means s^{*} is not the best response of individual i to s^{*},

By contradiction:

- Suppose it is not true
- Then we must have eliminated some strategy in the Nash equilibrium s^{*}
- Lets zoom in in the round where we first eliminate a strategy that is part of s^{*}
- Without loss of generality say we eliminated the strategy s_{i}^{*} of individual i
- It must have been that

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right)<u_{i}\left(s_{i}, s_{-i}\right) \forall s_{-i} \in S_{-i}
$$

- In particular

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)<u_{i}\left(s_{i}, s_{-i}^{*}\right)
$$

- But this means s_{i}^{*} is not the best response of individual i to s_{-i}^{*}
- And this is a contradiction!

Nash equilibrium survive IDSDS

Proof
of its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.

By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium

Proof
First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.
Proof.
By contradiction:

- Suppose that the results from IDSDS (s^{*}) is not a Nash Equilibrium
- For some individual i there exit $\left\{s_{i}\right.$. yuch that

$$
u_{i}\left(s_{i}, s_{i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{i}^{*}\right)
$$

First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.
Proof.

- Suppose that the results from $\operatorname{IDSDS}\left(s^{*}\right)$ is not a Nash Equilibrium
- For some individual i there exits s_{i} such that
$u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{i}^{*}\right)$
- But then s_{i} could not have been eliminated

Proof
fits a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.
Proof.
By contradiction:

- Suppose that the results from IDSDS $\left(s^{*}\right)$ is not a Nash Equilibrium
- For some individual i there exits s_{i} such that
$u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)$
- But then s_{i} could not have been eliminated
- And this is a contradiction!

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nosi equilitrium
Some examples
Relationship to dominan
Examples

Lecture 12: Game Theory // Nash equilibrium

ominance
Weakly dominated strategies
Nash equilibrium
Some examples
Relationship to domi ance
Examples
Cournot Competition

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

Suppose that there are two firms that produce the same product have zero marginal cost of production.

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero
marginal cost of production
- If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse
demand function is given by:
$P(Q)=120-Q . Q=q_{1}+q_{2}$.

Cournot Competition

- We will apply the conceppt at pure Nash squiiibrium to snalyze aligapny markets
- Suppose that there are two frms that sroduce tre same product have zero
marginal wos oc pubuction
- It tim 1 and 2 moduce n_{1} and g_{2} anis at the c.ammodity respertively, the inverse demand function is given by:

$$
\mu(Q)=120-Q: Q=q_{1}+q_{2} .
$$

- Stratcey space s $\left.5_{i} \quad 10,1 \infty\right)$

Cournal Comperition

- We will spply the cuncept uf pure Nash xjuiibrium to analyce oligopuy markels
- Supplase that there are tuon frms that produce the same praduct have jero
marginal cost 0^{2} production

demand function is ziven br:
$P(Q)=170-Q: Q=q_{1}+c_{2}$
- Strategy space ; $S_{i}=[0,+\infty)$
- The utility function of player i is given by

Caurnot Competition

- Are there any strictly dominant strateg es?

Cournot Compertion

- Are there any strictly dominant stratefies?
- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the atrategy 0

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q -

$$
\frac{d \pi_{i}}{d q_{i}}\left(120-q_{i}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i}
$$

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0

- Therefore 60 strictly dominates any $q_{i} \in(60,120)$

Cournot Competition

Cournal Competition

Cournot Competition

$$
\operatorname{BR}(\mathrm{G},)-\frac{120-9}{2}
$$

- for any $q_{i} \in[0,60]$. there exists som $\equiv q_{-i} \in\left[U,+\infty j\right.$ such that $B R,\left(a_{-i}\right)-q_{i}$

Cournot Competition

$$
B R(1,-)-\frac{120-7}{2}
$$

- for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in\left[0,+\infty j\right.$ such that $B R_{i}\left(a_{-i}\right)-q_{i}$
- Such a qi can never be strictly dominated

Cournot Competition

$$
B R_{i}(\alpha, i)=\frac{120}{2}
$$

- Far any $g: \leq[0,60]$. there exists same $q: \leq[0,+\infty)$ such that $B R:(q:-q$.
- Such a g. can never be strictly dominated
- Attar one round of deletion of strictly dominated strategics, we are lett with:

5. $[0,60]$

$$
m r_{1}=\frac{120-q_{2}}{2}
$$

Cournot Competition

-

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2} .
$$

- $q_{-i}=[0,60]$

Cournot Competition

- $B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.
- $q_{-i}=[0,60]$
- Therefore $q_{i} \in[0,30)$ are strictly dominated by $q_{i}=30$

Cournot Competition
-
$B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.

- $q_{-i}=[0,60]$
- Therefore $q_{i} \in[0,30)$ are strictly dominated by $q_{i}=30$
- After two rounds of deletion of strictly dominated strategies, we are left with $S_{i}=[30,60]$

Cournot Competition
-

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2} .
$$

- $q_{-i}=[30,60]$
- 45 strictly dominates all strategies $q_{i} \in(45,60$
- After three rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[30,45]$

Cournot Competition

$\Rightarrow \quad B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$

- $q_{-i}=[30,45]$
- 37.5 strictly dominates all strategies $q_{i} \in[30,37.5]$

After four rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[37.5,45]$

Cournot Competition

- After (infinitely) many iterations, the only remaining strategies are $S_{i}=40$
- The unique solution by IDSDS is $q_{1}^{*}=q_{2}^{*}=40$

Cournot Competition

- There will also be a unique Nash equilibriu

Cournot Competition

- There will also be a unique Nash equilibrium

$$
\bar{T}_{i}=\left(120-q_{1}-q_{2}\right) q_{i}=q_{i}+q_{2}
$$

$$
q_{1}=\frac{120-q_{2}}{2}=M R_{1}
$$

$$
q_{2}=\frac{r^{2}-q_{1}}{2}=M R_{2}
$$

Cournot Competition

- There will also be a unique Nash equilibrium
$\Rightarrow B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.
- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.

Cournot Competition

- There will also be a unique Nash equilibrium
- $B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.
- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.
-

$$
q_{1}^{*}=\frac{120-q_{2}^{*}}{2}, q_{2}^{*}=\frac{120-q_{1}^{*}}{2}
$$

Cournot Competition

- There will also be a unique Nash equilibrium
- $B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.
- At any Nash equilibrium, we must have: $q_{1}^{*} \in B R_{1}\left(q_{2}^{*}\right)$ and $q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$.

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

$$
\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600
$$

- The profits to each firm in the Cournot Competition is less than half of the monopoly profits

Cournot Competition vs Monopoly (cartel)

- In a perfectly competitive market, price equals marginal cost and the total quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:

$$
\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \pi^{m}=3600
$$

- The profits to each firm in the Cournot Competition is less than half of the monopoly profits
- In a duopoly, externalities are imposed on the other firm

$$
\begin{gathered}
\left(q_{2}^{\mu}=30\right. \\
\pi_{1}=\left(120-q_{2}-q_{1}\right) q_{1} \\
\frac{\partial \pi_{1}}{\partial q_{1}}=120-30-2 q_{1}=0 \\
\frac{90=q_{1}}{2=q_{1}} \\
\pi_{1}=\left(120-\frac{30}{q}-45\right) 45 \\
=45^{2}=1,025
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow 45 & =q_{1}=q_{2} \\
\pi_{1} & =(120-45-45) 45 \\
& =30.45=1,350
\end{aligned}
$$

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given $P\left(q_{1}+q_{2}+\cdots q_{n}\right)$.

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by
$P\left(q_{1}+q_{2}+\cdots q_{n}\right)$,
- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by
$P\left(q_{1}+q_{2}+\cdots q_{n}\right)$.

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by:

$$
P\left(q_{1}+q_{2}+\cdots q_{n}\right)
$$

- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i
- To simplify notation, let $Q_{-i}=\sum_{j \neq i} q_{j}$

$$
\max _{q_{i}} p\left(q_{i}+\underline{Q}_{=i}\right) q_{i}-c_{i}\left(q_{i}\right)
$$

- Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which $q^{q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}}$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy Nash equilibrium that is
symmetric, in which $q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}$
- In this case Q^{*}

$$
\begin{aligned}
& n=1 \text { y Monopdio } \\
& \rightarrow \frac{\alpha \rightarrow \infty}{P}=0 \Rightarrow P^{t}=\cos
\end{aligned}
$$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which $q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}$
- In this case $Q^{*}=n q^{*}$

$$
\frac{P\left(n q^{*}\right)-\frac{d c}{d q_{q}}\left(q^{*}\right)}{P\left(n q^{*}\right)}=-\frac{1}{n} \frac{1}{\varepsilon_{Q, P}\left(n q^{*}\right)}
$$

- Rewriting

$$
P\left(Q^{*}\right)=\frac{1}{1+\frac{1}{n} \frac{1}{\tilde{\varepsilon},\left(P Q^{*}\right)}} \frac{\partial c}{d q}\left(\frac{Q^{*}}{n}\right)
$$

Lecture 12: Game Theory // Nash equilibrium

Dominance
Weakly dominated strategies
Nash equilibrium
Some examples
Relationship to dominance
Examples
Cartels

Cartels
Suppose there are three firms who face zero marginal cost
The inverse demand function is given by

\therefore MAS $a H_{1}$

Cartels

- Suppose there are three firms who face zero marginal cost
- The inverse demand function is given by:

Cartels

- Suppose there are three firms who face zero marginal cost
- The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

- The first order condition gives

$$
1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}
$$

un $E Q$ Sumetruco

$$
q_{1}^{*}=q_{2}^{e}=q_{3}^{2}=q_{t}^{t}
$$

$$
M R_{3}=\frac{1-q_{1}-q_{2}}{2}=q_{3} \Rightarrow \frac{1-q^{2}-q^{2}}{2}=q^{*}
$$

$$
\begin{gathered}
1-2 q^{2}=2 q^{e} \\
4 a^{e}
\end{gathered}
$$

Cartels
Suppose there are three firms who face zero marginal cost
The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

- The first order condition gives

$$
1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}
$$

- In a Nash equilibrium we must have:

$$
\begin{aligned}
& q_{1}^{*}=\frac{1-q_{2}^{*}-q_{3}^{*}}{2} \\
& q_{2}^{*}=\frac{1-q_{1}^{*}-q_{3}^{*}}{2} \\
& q_{3}^{*}=\frac{1-q_{1}^{*}-q_{2}^{*}}{2}
\end{aligned}
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

Cartels

$$
r_{a 1}=\left(g_{i=1}^{2}=1 u_{1} q_{2}^{*}=\left(4, q_{3}^{2}=1 / 4\right)=114\right.
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

$$
q_{1}^{*}=\frac{1}{2}-\frac{q_{2}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{1}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{1}^{*}=\frac{1}{4}
$$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

$$
q_{1}^{*}=\frac{1}{2}-\frac{q_{2}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{1}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{1}^{*}=\frac{1}{4}
$$

- $q_{1}^{*}=q_{2}^{*}=q_{3}^{*}=\frac{1}{4}$

Cartels

- The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}
$$

- Note that

- Price is $p^{*}=1 / 4$ and all firms get the same profits $11 / 6$

Cartels

- Two of the firms merge into firm $-A$. while one of the firms remains single, call that firm B

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B
- Each firm then again faces the profit maximization problem:

$$
T_{i}=\max _{q_{i}}(\underbrace{}_{\text {(1-q}}
$$

$$
\frac{\partial \pi^{p}}{\partial \alpha_{i}}=-2 q_{i}-q_{i}=01
$$

Cartels

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B
- Each firm then again faces the profit maximization problem:

$$
\max _{q_{i}}\left(1-q_{i}-q_{-i}\right) q_{i} \Longrightarrow B R_{i}\left(q_{-i}\right)=\frac{1-q_{-i}}{2}
$$

- Therefore

$$
\begin{aligned}
& q_{A}^{*}=\frac{1-q_{B}^{*}}{2} \\
& q_{B}^{*}=\frac{1-q_{A}^{*}}{2}
\end{aligned}
$$

$$
\begin{array}{r}
q_{A}^{\prime}=q^{2}=\bar{B}^{t}=\Rightarrow q^{t}=\frac{1-q^{t}}{2} \\
2 q^{t}=1-q^{t} \\
q^{t}=1 / 3
\end{array}
$$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3}
$$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3}
$$

- The price is then $p^{*}=1 / 3$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$
- Firms 1 and 2 suffered, while firm 3 is better off!

Cartels

- Solving this:

$$
q_{A}^{*}=q_{B}^{*}=\frac{1}{3} .
$$

- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then
profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains profit of $1 / 9$ profits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$
- Firms 1 and 2 suffered, while firm 3 is better off!
- Firm 3 is obtaining a disproportionate share of the joint profits (more than $1 / 3$)

Cartels

- You might expect that 3 may want to join the cartel as well..
- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of $\frac{1}{12}<\frac{1}{9}$

Cartels

- You might expect that 3 may want to join the cartel as well..
- In the monopolist problem, we solve

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of $\frac{1}{12}<\frac{1}{9}$
- Firm 3 clearly wants to stay out

Cartels

There are many ifficulties associated with sustaining collusive agreements (e.g., the QPEC cartel)

[^0]: - The solution by means of iterated elimination of dominated strategies is

