Lecture12

Thursday, March 26, 2020 2:58 PM

POF

Lecture12

Lecture 12: Game Theory $//\ {\rm Nash}$ equilibrium

Mauricio Romero

Lecture 12: Game Theory $//\ Nash$ equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

(0) (d) (2) (2) 2 000

Lecture 12: Game Theory $//\ Nash$ equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

101-101-121-121 2 040

Beauty contest

Each individual maximizes his utility, FOC:

 $-2(s_i-\frac{3}{2}a_{-i})=0$

- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others
- ► That is they would like to choose s_i = ³/₂a_{-i}
- ▶ but $a_{-i} \in [20, 60]$
- Therefore $s_i = 20$ is dominated by $s_i = 30$

10110110110100

Beauty contest

▶ The same goes for any number between 20 (inclusive) and 30 (not included)

(0) (0) (2) (2) (2) 2 040

Beauty contest

The same goes for any number between 20 (inclusive) and 30 (not included)

DOGINADO

Beauty contest

- ▶ The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., a_{−i} ∈ [30, 60])
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45

1 151 5 906

45

- Beauty contest
 - ▶ The same goes for any number between 20 (inclusive) and 30 (not included)
 - ► Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., a_{-i} ∈ [30, 60])
 - Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
 - ► Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., $a_{-i} \in [45, 60]$) \rightarrow $b_{-5} O_{-i} \in [67, 5, 90]$

Beauty contest

- ▶ The same goes for any number between 20 (inclusive) and 30 (not included)
- ► Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., a_{-i} ∈ [30, 60])
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- ► Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., a_{-i} ∈ [45, 60])
- 60 would dominate any other selection and therefore all the players select 60.

Beauty contest

- ▶ The same goes for any number between 20 (inclusive) and 30 (not included)
- Knowing this, all individuals believe that everyone else will select a number between 30 and 60 (i.e., a_{-i} ∈ [30, 60])
- Playing a number between 30 and 45 (not including) would be strictly dominated by playing 45
- ▶ Knowing this, all individuals believe that everyone else will select a number between 45 and 60 (i.e., $a_{-i} \in [45, 60]$)
- ▶ 60 would dominate any other selection and therefore all the players select 60.
- The solution by means of iterated elimination of dominated strategies is (60, 60, ..., 60) 100 times

01 101 121 121 2 Date

- There is no strictly dominated strategy
- \blacktriangleright However, C always gives at least the same utility to player 1 as B
- \blacktriangleright It's tempting to think player 1 would never play C
- \blacktriangleright However, if player 1 is sure that player two is going to play a he would be completely indifferent between playing B or C

101100 201121121 20100

Definition s_i weakly dominates s'_i if for all opponent pure strategy profiles, $s_i = u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$ and there is at least one opponent strategy profile $s''_{-i} \in S_{-i}$ for $u_i(s_i, s''_{-i}) > u_i(s'_i, s''_{-i})$.	$S_{-i} \in S_{-i},$ which	
	101101212121	

Given the assumptions we have, we can not eliminate a weakly dominated strategy

- Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough

- ▶ Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game

- $\blacktriangleright\,$ Given the assumptions we have, we can not eliminate a weakly dominated strategy
- Rationality is not enough
- Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- There is a problem, and that is that the order in which we eliminate the strategies matters

If we eliminate B (C dominates weakly), then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result (C, a).

101 101 121 121 2 DAG

101 - 101 - 121 - 121 - 101 - 101

Lecture 12:	Game	Theory /,	/ Nash	equilibrium
-------------	------	-----------	--------	-------------

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

101100 101100 101100 10100

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

Remember the definition of competitive equilibrium in a market economy.

Definition

A competitive equilibrium in a market economy is a vector of prices and baskets x_i such that: 1) x_i maximizes the utility of each individual given the price vector i.e.

 $x_i = \arg \max_{p \ cdotx_i \leq p \cdot w_i} u(x_i)$

2) the markets empty.

(D) (B) (2) (2) (2) (2) (2)

- \blacktriangleright 1) means that given the prices, individuals have no incentive to demand a different amount
- ▶ The idea is to extend this concept to strategic situations

Best response

We denote $BR_i(s_{-i})$ (best response) as the set of strategies of individual *i* that maximize her utility given that other individuals follow the strategy profile s_{-i} . Formally,

Best response

We denote $BR_i(s_{-i})$ (best response) as the set of strategies of individual *i* that maximize her utility given that other individuals follow the strategy profile s_{-i} . Formally,

Definition

Best response

We denote $BR_i(s_{-i})$ (best response) as the set of strategies of individual i that maximize her utility given that other individuals follow the strategy profile s_{-i} . Formally,

Definition

Given a strategy profile of opponents s_{-i} , we can define the best response of player *i*:

 $BR_i(s_{-i}) = \arg \max_{s'_i \in S_i} u_i(s'_i, s_{-i}).$ +FISO

- ▶ $s_i \in BR_i(s_{-i})$ if and only if $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ for all $s'_i \in S_i$
- There could be multiple strategies in $BR_i(s_{-i})$ but all such strategies give the same utility to player i if the opponents are indeed playing according to s_{-i}

Nash equilibrium
Definition Suppose that we have a game $(I = \{1, 2,, n\}, S_1,, S_n, u_1,, u_n)$. Then a strategy profile $s^* = (s_1^*,, s_n^*)$ is a pure strategy Nash equilibrium if for every <i>j</i> and for every $s_i \in S_i$. $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$. $S_i^* \in MIL_i(S_i^*, S_i^*)$. $BR_i(S_i^*, S_i^*)$ V_i^*
Nash equilibrium
Definition Suppose that we have a game $(I = \{1, 2,, n\}, S_1,, S_n, u_1,, u_n)$. Then a strategy profile $s^* = (s_1^*,, s_n^*)$ is a pure strategy Nash equilibrium if for every i , $s_i^* \in BR_i(s_{-i}^*)$.
Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate

Nash equilibrium

Definition

Suppose that we have a game $(I = \{1, 2, ..., n\}, S_1, ..., S_n, u_1, ..., u_n)$. Then a strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a **pure strategy** Nash equilibrium if for every *i*, $s_i^* \in BR_i(s_{-i}^*)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- ▶ once this equilibrium is reached, nobody has incentives to move from there

Nash equilibrium

Definition

Suppose that we have a game $(l = \{1, 2, ..., n\}, S_1, ..., S_n, u_1, ..., u_n)$. Then a strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a **pure strategy** Nash equilibrium if for every *i*, $s_i^* \in BR_i(s_{-i}^*)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there
- This is a concept of stability, but there is no way to ensure, or predict, that the game will reach this equilibrium

0 + + Ø + + E + + E + + Ø + + 0

Lecture 12: Game Theory $//\ {\rm Nash}$ equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

10) (B) (2) (2) 2 940

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

10110110110100

Beauty contest

 \blacktriangleright Consider the following game among 2 people. Each individual selects a number, $s_i,$ between 20 and 60.

101101101121121 2 000

Beauty contest

- Consider the following game among 2 people. Each individual selects a number, s_i, between 20 and 60.
- ▶ Let s_{-i} be the number selected by the other individual.

0 + (0 + (2 + (2 + (2 + 0)))

Prisoner's dilemma – A trick
Best response of 1 to 2 playing C $5z$ $5(\begin{array}{c} C & NC \\ \hline C & 5,5 & 0.10 \\ \hline NC & 10,0 & 22 \\ \hline \end{array}) \overline{FN} = (NC, NC)$
(0) (3) (\$) (\$) \$ 540
Prisoner's dilemma – A trick
Best response of 1 to 2 playing NC C NC C 5.5 0,10 NC 10.0 2,2
(a), (d), (2), (2), (2), (2), (2), (2), (2), (2
Prisoner's dilemma – A trick
C NC C 5,5 0,10 NC 10,0 2,2
· · · · · · · · · · · · · · · · · · ·
Prisoner's dilemma – A trick
Best response of 2 to 1 playing NC
NC $ $ 10.0 $ $ 2.2 $ $ When underlined for both players, it is a Nash equilibrium (both are doing their BR)
(11)(13)(13)(13) 第一约文化

Matching pennies (Pares o Nones) – Simultaneous	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	<0><8><2><2><2><2><2><2><2><2><2><2 2
Matching pennies (Pares o Nones) – Simultaneous	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$BR_1(s_2) = \begin{cases} 1 & \text{if } s_2 = 1 \end{cases}$	
2 if $s_2 = 2$	
$BR_{2}(s_{1}) = \begin{cases} 2 & \text{if } s_{2} = 2 \\ 1 & \text{if } s_{1} = 1 \\ 1 & \text{if } s_{2} = 2 \end{cases}$	
$BR_2(s_1) = \begin{cases} 2 & \text{if } s_2 = 2 \\ BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies	
$BR_2(s_1) = \begin{cases} 2 & \text{if } s_2 = 2 \\ BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies	
$Re^{1/2} = \begin{cases} 2 & \text{if } s_2 = 2 \\ BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies	1011(Ø112)(2) 2 98(
$[C2] \{2 \text{if } s_2 = 2$ $BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1\\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies	-01818- 8-050
$Excurse (1,1) = \begin{cases} 2 & \text{if } s_2 = 2 \\ BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies $Excurse (1,1) = (1,$	・ロ・・グ・・ミ・・ミー 足 のた
$Excurse 12: \{2 \text{ if } s_2 = 2 \\ BR_2(s_1) = \begin{cases} 2 \text{ if } s_1 = 1 \\ 1 \text{ if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies $Excurse 12: \text{ Game Theory } // \text{ Nash equilibrium}$ Dominance Nash equilibrium Some examples	-00512-2-050
$Excurse 12: \text{ ff } s_2 = 2$ $BR_2(s_1) = \begin{cases} 2 & \text{ if } s_1 = 1 \\ 1 & \text{ if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies $Excurse 12: \text{ Game Theory } // \text{ Nash equilibrium}$ Dominance Nash equilibrium Some examples Relationship to dominance	(ロ・・ダ・・ミ・・ミ・ ま のな)
Excurrent for the constraints and the constraints are constraints are constraints and the constraints are co	
$Excurse = 2$ $BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies $Exture = 12: \text{ Game Theory // Nash equilibrium}$ Dominance Nash equilibrium Some examples Relationship to dominance Examples	-03-12-13-2 010
Excurse for the constraints and the constraints are cons	・ロ・・グ・・ミ・・ミ うた ・ロ・・グ・・ミ・・ミ うた
$Examples = 2$ $BR_2(s_1) = \begin{cases} 2 & \text{if } s_1 = 1 \\ 1 & \text{if } s_2 = 2 \end{cases}$ There is no Nash equilibrium in pure strategies $Exture 12: \text{ Game Theory } // \text{ Nash equilibrium}$ Dominance Nash equilibrium Some examples Relationship to dominance Examples $Examples$ Lecture 12: Game Theory // Nash equilibrium	-cod)ziz- z 0x0
Excurse 12: Game Theory // Nash equilibrium $Excurse 12: Game Theory // Nash equilibrium$ $Examples$ $Examples$ $Examples$ $Examples$ $Examples$ $Examples$ $Examples$ $Examples$ $Examples$	・ロ・・グ・・ミ・・ミ クス(

Some examples

Relationship to dominance

Examples

01101121121 2 000

First let's proof its a Nash Equilibrium. The fact that is previous theorem	unique is trivial by the	
Proof.		
By contradiction:		
 Suppose that the results from IDSDS (s*) is not a N For some individual i there exits s_i such that 	Nash Equilibrium	
$u_i(s_i, s^*_{-i}) > u_i(s^*_i, s^*_{-i})$)	
But then s _i could not have been eliminated		
	E	
	(D) (B) (2) (2) (3)	500
roof		
First let's proof its a Nash Equilibrium. The fact that is previous theorem.	unique is trivial by the	
Proof.		
By contradiction:		
	Nash Equilibrium	
Suppose that the results from IDSDS (s [*]) is not a f		
 Suppose that the results from IDSDS (s[*]) is not a f For some individual i there exits s_i such that 		
 Suppose that the results from IDSDS (s[*]) is not a f For some individual i there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s[*]_i, s[*]_{-i}))	
 Suppose that the results from IDSDS (s[*]) is not a f For some individual i there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s[*]_i, s[*]_{-i}) But then s_i could not have been eliminated)	
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s[*]_i, s[*]_{-i}) But then s_i could not have been eliminated And this is a contradiction!)	
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s[*]_i, s[*]_{-i}) But then s_i could not have been eliminated And this is a contradiction!)]
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits s_i such that <i>u_i</i>(s_i, s[*]_{-i}) > <i>u_i</i>(s[*]_i, s[*]_{-i}) But then s_i could not have been eliminated And this is a contradiction!)]
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that <i>u_i</i>(s_i, s[*]_{-i}) > <i>u_i</i>(s[*]_i, s[*]_{-i}) But then s_i could not have been eliminated And this is a contradiction!)] 1 040
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits s_i such that <i>u_i</i>(s_i, s[*]_{-i}) > <i>u_i</i>(s_i[*], s[*]_{-i}) But then s_i could not have been eliminated And this is a contradiction! exture 12: Game Theory // Nash equilibrium) 	1 1 1
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s_i[*], s[*]_{-i,j}) > u_i(s_i[*], s[*]_{-i,j}) > u_i(s_i[*], s[*]_{-i,j}) But then s_i could not have been eliminated And this is a contradiction!) 	<u>।</u>
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s[*]_i, s[*]_{-i,i}) But then s_i could not have been eliminated And this is a contradiction!) 	2
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]_{-i}) > u_i(s_i[*], s[*]_{-i,i}) But then s_i could not have been eliminated And this is a contradiction!)] १ २९५२२
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits s_i such that u_l(s_i, s[*]₋₁) > u_l(s[*]_i, s[*]₋₁) But then s_i could not have been eliminated And this is a contradiction!)	2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]₋₁) > u_i(s[*]_i, s[*]₋₁) But then s_i could not have been eliminated And this is a contradiction!) 	<u>।</u>
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]₋₁) > u_i(s[*]_i, s[*]₋₁) But then s_i could not have been eliminated And this is a contradiction!) 	2
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits s_i such that <i>u_i</i>(s_i, s[*]₋₁) > <i>u_i</i>(s[*]_i, s[*]₋₁) But then s_i could not have been eliminated And this is a contradiction! Secture 12: Game Theory // Nash equilibrium Dominance Nash equilibrium Some examples Relationship to dominance)	2
 Suppose that the results from IDSDS (s[*]) is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]₋₁) > u_i(s[*]_i, s[*]₋₁) But then s_i could not have been eliminated And this is a contradiction!)	2 240
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits <i>s_i</i> such that <i>u_i</i>(<i>s_i</i>, <i>s_{-i}</i>) > <i>u_i</i>(<i>s_i[*]</i>, <i>s_{-i}[*]</i>). But then <i>s_i</i> could not have been eliminated And this is a contradiction! exture 12: Game Theory // Nash equilibrium. Dominance Nash equilibrium Some examples Relationship to dominance Examples)] 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
 Suppose that the results from IDSDS (s') is not a f For some individual <i>i</i> there exits s_i such that u_i(s_i, s[*]₋₁) > u_i(s[*]_i, s[*]₋₁). But then s_i could not have been eliminated And this is a contradiction!)	3

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nash equilibrium

Some examples

Relationship to dominance

Examples

101101121121 2 94

Lecture 12: Game Theory // Nash equilibrium

Dominance

Nach aquilibrium

Some examples

Relationship to dominance

Examples Cournot Competition

Cartels

10110 S (S) (S) (S) S 940

Cournot Competition

▶ We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

Cournot Competition

- > We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.

Cournot Competition

- ► We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.
- If firm 1 and 2 produce q₁ and q₂ units of the commodity respectively, the inverse demand function is given by:

0 + + (0 + + 2 + + 2 + + 2 + + 0 + (0

Cournot Competition

- ▶ We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero marginal cost of production.
- **b** If firm 1 and 2 produce q_1 and q_2 units of the commodity respectively, the inverse domand function is given by:
 - $P(Q) = 120 Q, Q = q_1 + q_2.$
- Strategy space is $S_i = [0, +\infty)$

Cournot Competition

▶ We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

-0 $P(Q) = 120 - Q, Q = q_1 + q_2.$ • Strategy space is $S_i = [0, +\infty)$ I he utility function of player i is given by: 6 $a_1(q_1, q_2) = (120 - (q_1 - q_2))q_1^{-1}$ (0779.e(60,00) $\pi_2(q_1, q_2) = (120 - (q_1 - q_2))q_2$ 0 Cournot Competition NL. 120-Are there any strictly dominant strategies? = 120-OTT De NUNCA SON MR

Section () and () show (

Cournot Competition

Are there any strictly dominant strategies?

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?

10,10,10,12,12,12,12,000

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- ▶ The strategies $q_i \in (120, +\infty)$ are strictly dominated by the strategy 0

Cournot Competition

- ▶ Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- ▶ The strategies $q_i \in (120, +\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q_{-i},

 $\frac{d\pi_i}{da_i}(120-q_i-q_{-i})q_i=120-2q_i-q_{-i}$

Sie 0,60 Trutz (92) t(tti(u940), ttz(40, 40)) tz = hu0, u01tz = hu0, u01

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- ► The strategies q_i ∈ (120, +∞) are strictly dominated by the strategy 0
- Are there any others? given q_{-i},

 $rac{d\pi_i}{da_i}(120-q_i-q_{-i})q_i=120-2q_i-q_{-i}$

▶ Therefore 60 strictly dominates any q_i ∈ (60, 120]

Cournot Competition

01 101 121 121 2 940

51

▶ After three rounds of deletion of strictly dominated strategies, we are left with: $S_i = [30, 45]$

1011 (B) (S) (S) (S) (S)

Cournot Competition

$$\blacktriangleright$$

$$BR_i(q_{-i}) = \frac{120 - q_{-i}}{2}.$$

▶ q_i = [30, 45]

- ▶ 37.5 strictly dominates all strategies $q_i \in [30, 37.5]$
- ▶ After four rounds of deletion of strictly dominated strategies, we are left with: $S_i = [37.5, 45]$

Cournot Competition

• After (infinitely) many iterations, the only remaining strategies are $S_i = 40$

▶ The unique solution by IDSDS is $q_1^* = q_2^* = 40$.

101101121121 2 104

Cournot Competition

There will also be a unique Nash equilibrium

Cournot Competition

There will also be a unique Nash equilibrium

$$BR_i(q_{-i}) = \frac{120 - q_{-i}}{2}.$$

▶ At any Nash equilibrium, we must have: $q_1^* \in BR_1(q_2^*)$ and $q_2^* \in BR_2(q_1^*)$.

Cournot Competition

There will also be a unique Nash equilibrium

▶ At any Nash equilibrium, we must have: $q_1^* \in BR_1(q_2^*)$ and $q_2^* \in BR_2(q_1^*)$.

 $BR_i(q_{-i}) = \frac{120-q_{-i}}{2}.$

Cournot Competition

There will also be a unique Nash equilibrium

$$BR_i(q_{-i})=\frac{120-q_{-i}}{2}.$$

▶ At any Nash equilibrium, we must have: $q_1^* \in BR_1(q_2^*)$ and $q_2^* \in BR_2(q_1^*)$.

$$q_{1}^{*} = \frac{120 - q_{2}^{*}}{2}, q_{2}^{*} = \frac{120 - q_{1}^{*}}{2}.$$
We can solve for q_{1}^{*} and q_{2}^{*} to obtain:
$$q_{1}^{*} = 40, q_{2}^{*} = 40, Q^{*} = 80 \sqrt{\Pi_{1}^{*} = \Pi_{2}^{*} = 1600}.$$

 $= 7 \cdot 15 = 9_{1} = 9_{2}$ $\Pi_{1} = (120 - 45 - 45) \cdot 45$ $= 30 \cdot 45 = 1,350$

101 5 151 121 121 2 Date

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

 $\max_Q (1-Q)Q \Longrightarrow Q^* = rac{1}{2}.$

 \blacktriangleright Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of $\frac{1}{12} < \frac{1}{9}$

101101101121121 2 000

