Lecture13

ieves, 26 de marro de $2020 \quad 03: 05$ p. m.
图 ecture13

Lecture 13: Game Theory // Nash equilibrium

Examples- Continued
Cournot - Revisited
Betrand Competitio
Betrand Competition - Different cost
Betrand Competition
Hotelling and Voting Models

- N identical firms competing on the same market

Cournot Competition

N identical firms competing on the same mark

- Marginal cost is constant and equal to 5

Cournot Competition

- N identical firms competing on the same market

Marginal cost is cont

- Aggregate inverse demand is $\quad P=a-b Q$

Cournot Competition
N identical firms competing on the same market
Marginal cost is constant and equal to c
Aggregate inverse demand is

$$
\begin{aligned}
& \pi^{j}=\left(a-b\left(\sum_{i=x}^{\infty} q^{c}\right)\right) q^{j}-c q^{j} \\
& \pi^{j}=(\underbrace{\left(a-b\left(\widetilde{q_{1}+q^{2}+\cdots+q^{2}}\right)\right.}_{0}) q_{j}-\left(q_{j} ;\right.
\end{aligned}
$$

> Cournot Competition
> - The FOC for a given firms.

$$
\begin{aligned}
& a-b \log -b q^{2}-c=0 \quad q_{1}^{2}=q_{2}=\cdots=q_{N}^{2}=q^{2} \\
& a-\log (N+1)-c=0
\end{aligned}
$$

Cournot Competition

- The FOC for a given firm is:

Cournot Competition

- The FOC for a given firm is:

$$
\begin{aligned}
& a-b \sum_{i=1}^{N} q^{i}-b q_{j}-c=0 \\
& \text { - The symmetric Nash equilibrium is given by } \\
& q^{*}=\frac{a-c}{b(N+1)} \\
& \text { - Thus } \\
& \sum_{j=1}^{N} q^{j}=\frac{N(a-c)}{b(N+1)} / \\
& p=\underset{\left.\substack{ \\
(a-N)^{2} \\
(N+1)} q\right]}{ } \\
& \Pi^{i}=\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

Cournot Competition

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

\rightarrow As $N \rightarrow \infty$ we get close to perfect competition

Cournot Competition

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{}
\end{aligned}
$$

$$
\frac{N(a-c)}{(N+1)(b)}
$$

$$
\begin{aligned}
& Q=\frac{N(N+1)(b)}{(N-c)} \\
& P=a-b Q=a-b\left(\frac{N(a-c)}{(N+1) / b}\right)
\end{aligned}
$$

$$
=\frac{a(N+1)-N(a-c)}{N+1}
$$

$$
\begin{aligned}
\mathbb{B}_{i} & =\left(\frac{a+N c}{N+1}-c\right)\left(\frac{a-c}{\frac{N+1)}{b(N+1)}}\right) \\
& =\left(\frac{\left.\frac{a+N c-c(N+1)}{N+1}\right)\left(\frac{a-c)}{b(N+1)}\right)=\left(\frac{a-c}{N+1}\right)\left(\frac{a-c}{b(N+1)}\right)=\left(\frac{a-c}{N+1}\right)^{2} \frac{1}{b}}{}=1\right.
\end{aligned}
$$

$$
S 1 N=1 \rightarrow g^{m}=C^{m}=\frac{a-c}{2 b}
$$

$$
\begin{aligned}
\sum_{j=1}^{N} a^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

- As $N \rightarrow \infty$ we get close to perfect competition
- $N=1$ we get the monopoly case

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Bertrand Competition
Bertrand Competition - Different costs
Hotelling and Voting Models

Bertrand Competition

- Consider the alternative model in which firms set prices

In the monopolist's problem, there was not distinction between a quantity-setting model and a price setting

- In oligopolistic models, this distinction is very important \Longrightarrow

Bertrand Competition

- Consider two firms with the same marginal constant marginal cost of production and demand is completely inelastic
- Each firm simultaneously chooses a price $p_{i} \in[0,+\infty)$
- If p_{1}, p_{2} are the chosen prices, then the utility functions of firm i is given by: $\pi \pi_{i}\left(p_{i}, p_{-i}\right)= \begin{cases}\frac{0}{\left(p_{i}-c\right)} \\ \left(p_{i}-c\right) Q\left(p_{i}\right) \\ 2\left(p_{i}\right) & \text { if } p_{i}>p_{-i}, \\ p_{i}=p_{-i} \\ p_{i}<p_{-i}\end{cases}$

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(M R^{\prime}\left(p_{i}\right)<0\right)$:

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right) .
\end{aligned}
$$

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(M R^{\prime}\left(p_{i}\right)<0\right)$:

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
\end{aligned}
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(M R^{\prime}\left(p_{i}\right)<0\right)$:

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
\end{aligned}
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.
- Then

$$
M R\left(p_{i}\right)-c>0 \text { if } p_{i}<p^{m}, M R\left(p_{i}\right)-c<0 \text { if } p_{i}>p^{m}
$$

Bertrand Competition

- The best response function is:

$$
B R_{i}\left(p_{-i}\right)= \begin{cases}p^{m} & \text { if } p_{-i}>p^{m} \\ p_{-i}-\varepsilon & \text { if } c<p_{-i} \leq p^{m} \\ {[c,+\infty)} & \text { if } c=p_{-i} \\ (c,+\infty) & \text { if } c>p_{-i}\end{cases}
$$

- Where ε is the smallest monetary unit

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$
- So this cannot be a Nash equilibrium

Bertrand Competition
Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$

Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(\rho_{1}^{*}\right)=\rho_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2 \varepsilon$

Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2 \varepsilon$

So this cannot be Nash equilibriun

Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right) \in\left[p_{1}^{*}+\varepsilon, \infty\right)$

Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(\rho_{1}^{*}\right) \in\left[\rho_{1}^{*}+\varepsilon, \infty\right)$
- So this cannot be a Nash equilibrium

Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$

Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$

The unique pure strategy Nash equilibrium is $p_{1}^{*}=p_{2}^{*}=c$

Bertrand Competition

Thus in contrast to the Cournot duopoly model, in the Bertrand competition model,
two firms get us back to perfect competition $(p=c)$

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Cournot - Revisited
Bertrand Competition
Bertrand Competition - Different costs
Bertrand Competition - H Firms
Holing and Voting Models

Bertrand Competition - different costs

- Suppose that the marginal cost of firm 1 is equal to c_{1} and the marginal cost of

- The best response for each firm:

$$
B R_{i}\left(p_{-i}\right)= \begin{cases}p_{m}^{i} & \text { if } p_{-i}>p_{m}^{i} \\ p_{-i}-\varepsilon & \text { if } c_{i}<p_{-i} \leq p_{m}^{i} \\ {\left[c_{i},+\infty\right)} & \text { if } \frac{p_{-i}=c_{i}}{\left(p_{-i},+\infty\right)} \\ \text { if } p_{-i<c_{i}}\end{cases}
$$

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

 Lefincio materaticamente Pus los Drecios

If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss

- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut p_{2}^{*} and get a positive profit

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market
- Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut p_{2}^{\prime} and get a positive profil
- Firm 1 would really like to price at some price p_{1}^{*} just below the marginal cost of firm 2, but wherever p_{2} is set, Firm 1 would try to increase prices

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could

- Firm 1 would really like to price at some price p_{1}^{*} just below the marginal cost of firm 2 , but wherever p_{2} is set, Firm 1 would try to increase prices

No NE because of continuous prices

Bertrand Competition - discreet prices $P_{i} \in \mathbb{N}_{+}$

- Suppose $c_{1}=0<c_{2}=10$

Bertrand Competition - discreet prices

Suppose $c_{1}=0<c_{2}=10$

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.

Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.
- Suppose that $\left(p_{1}^{*}, p_{2}^{*}\right)$ is a pure strategy Nash equilibrium...

Bertrand Competition - discreet prices

Case 1: $p_{1}^{*}=0$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$

Bertrand Competition - discreet prices

Case 1: $p_{1}^{*}=0$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$
- p_{1}^{*} cannot be a best response to p_{2}^{*} since by setting $p_{1}=p_{2}^{*}$ firm 1 would get strictly positive profits

$$
\begin{aligned}
& M R_{2}\left(P_{1}=9\right)=([10, \infty) \\
& M Z_{1}\left(P_{2}=10\right)=9 \\
& E v=(9,10)
\end{aligned}
$$

$$
\begin{aligned}
& M R_{2}\left(R_{1}=8\right)=(9, \infty) \\
& M_{2}\left(P_{2}=9\right)=8
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R R}_{2} \\
& M R_{1}
\end{aligned}
$$

$$
\equiv N=(8,9)
$$

$$
E N=(7,8)
$$

$$
E N=(6,7)
$$

$$
E N=(5,6)
$$

$$
\text { EN }=(4,5)
$$

$$
E N=(3,4)
$$

$$
E N=\left(2,3^{x}\right)
$$

$$
E_{N}=(1,2)
$$

Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$
- If $p_{2}^{*}>p_{1}^{*}+1$, then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price

Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$
- If $p_{2}^{*}>p_{1}^{*}+1$, then this cannot be a Nash equilibrium since then firm 1 would have an incentive to raise the price
- The only equilibrium is $\left(p_{1}^{*}, p_{1}^{*}+1\right)$

Bertrand Competition - discreet prices
Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$

Bertrand Competition - discreet prices
Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9 and control the whole market:

$$
\frac{1}{2}(10)=5<9 \text {. }
$$

Bertrand Competition - discreet prices
Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$

It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9

$$
\frac{1}{2}(10)=5<9 .
$$

We must have $p_{2}^{*}=p_{1}^{*}+1$ since otherwise, firm 1 would have an incentive to
raise the price higher raise the price highe

Bertrand Competition - discreet prices
Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9

$$
\frac{1}{2}(10)=5<9 .
$$

- We must have $p_{2}^{*}=p_{1}^{*}+1$ since otherwise, firm 1 would have an incentive to
raise the price higher
$\left(p_{1}^{*}, p_{2}^{*}\right)=(10,11)$ is a Nash equilibrium

Bertrand Competition - discreet prices

Case 4: $p_{1}^{*}=11$

Best response of firm 2 is to set $p_{2}^{*}=11$

Bertrand Competition - discreet prices

Case 4: $p_{1}^{*}=11$

- Best response of firm 2 is to set $p_{2}^{*}=11$

Firm 1 would not be best responding since by setting a price of $p_{1}=10$, it would get strictly positive profits

Bertrand Competition - discreet prices

Case 5: $p_{1}^{*} \geq 12$

- Firm 2's best response is to set either $p_{2}^{*}=p_{1}^{*}-1$ or $p_{2}^{* *}=p_{1}^{*}$

Bertrand Competition - discreet prices
Case 5: $p_{1}^{*} \geq 12$

- Firm 2's best response is to set either $p_{2}^{*}=p_{1}^{*}-1$ or $p_{2}^{*}=p_{1}^{*}$

Firm 1 is not best responding since by lowering the price it can get the whole market.

Lecture 13: Game Theory // Nash equilibrium

> Examples - Continued Councot - Ruvisted Betran Cometion Bertrand Compertion - Different costs Bertrand Compeetition -3 F Firms

Bertrand Competition - 3 firms

- Symmetric marginal costs model but with 3 firms \rightarrow Misho Cosio

Bertrand Competition - 3 firms

- Symmetric marginal costs model but with 3 firms

Best response of firm i

$$
B R_{1}\left(p_{2}, p_{3}\right)= \begin{cases}p^{m} & \text { if } \min \left\{p_{2}, p_{3}\right\}>p^{m}, \\ \min \left\{p_{2}, p_{3}\right\}-\varepsilon & \text { if } c<\min \left\{p_{2}, p_{3}\right\} \leq p^{m}, \\ {[c,+\infty)} & \text { if } c=\min \left\{p_{2}, p_{3}\right\}, \\ \left(\min \left\{p_{2}, p_{p}\right\},+\infty\right) & \text { if } c>\min \left\{p_{2}, p_{3}\right\} .\end{cases}
$$

Berrand Competition - 3 firms

- Symmetric marginal costs model but with 3 firms
- Best response of firm i is given by:

Bertrand Competition - 3 firms
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$

Bertrand Competition - 3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that
min $\left\{p_{1}, p_{3}, p_{3}\right\}>c$
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$

Bertrand Competition - 3 firms
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$

- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$

Can there be a pure strategy Nash equilibrium in which just one firm sets price
equal to c ? equal to c ?

Bertrand Competition - 3 firms
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that
$\min \left\{p_{1}, p_{2}, p_{2}, p_{3}\right\}>c$
$\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
Can there be a pure strategy Nash equilibrium in which just one firm sets price
equal to c ?

Bertrand Competition - 3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ? No since that firm would want to raise his price a bit and get strictly better profits
- There must be at least two firms that set price equal to marginal cost

Bertrand Competition - 3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$

Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ? No since that firm would want to raise his price a bit and get strictly better profits
There must be at least two firms that set price equal to marginal cos
Set of all pure strategy Nash equilibria are given by:
$\{(c, \varepsilon, c+\varepsilon): \varepsilon \geq 0\} \cup\{(c, \varepsilon \pm \varepsilon, c): \varepsilon \geq 0\} \cup\{(\bar{c}+\varepsilon, \bar{c}, \bar{c}): \varepsilon \geq 0\}$.

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued Cournot - Revisited
 Courron- Revisted Betrand Competition Bertrand Competion - Different costs Bertrand Competition- 3 Firms
 Hoteling and Voting Models

x_{1}, x_{2} represents the characteristic of the product

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
x_{1}, x_{2} represents the characteristic of the product
For example, this could be interpeted as a model in which there is a "linear city"
represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product

For example, this could be interpreted as a model in which there is a "linear city"
repersented by the interval $[0,1]$]
In this interpretation, the firms are each deciding where to locate on this line
$\left.\begin{array}{l}\text { Consumers are uniformly distributed on the line }[0,1] \text {, where } \theta \in[0,1] \text { represents } \\ \text { the consumers ideal type of product that he would } 1 \text { ike to consume }\end{array}\right]$

Hotelling
Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
x_{1}, x_{2} represents the characteristic of the product

- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents
the consumers ideal type of product that he would like to consume

If the firms $i=1,2$ respectively produce products of characteristic x_{1} and x_{2}, then
a consumer at θ would consume whichever product is closest to θ

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume
- If the firms $i=1,2$ respectively produce products of characteristic x_{1} and x_{2}, then
a consumer at θ would consume whichever product is closest to θ
- The game consists of the two players $i=1,2$, each of whom chooses a point $x_{1}, x_{2} \in[0,1]$ simultaneously.

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1:

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Similarly,

$$
u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ \frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Hotelling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1:

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Similarly,

$$
u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ \frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)
- Case 3: Suppose next that $x_{2}=1 / 2$. Here there will be a best response for firm 1 at $1 / 2$

Hotelling

$$
B R_{1}\left(x_{2}\right)= \begin{cases}\emptyset & \text { if } x_{2}>1 / 2 \\ 1 / 2 & \text { if } x_{2}=1 / 2 \\ \emptyset & \text { if } x_{2}<1 / 2\end{cases}
$$

Symmetrically, we have:

$$
B R_{2}\left(x_{1}\right)= \begin{cases}\emptyset & \text { if } x_{1}>1 / 2 \\ 1 / 2 & \text { if } x_{1}=1 / 2 \\ \emptyset & \text { if } x_{1}<1 / 2\end{cases}
$$

The unique Nash equilibrium is for each firm to choose $\left(x_{1}, x_{2}\right)=(1 / 2,1 / 2)$. Each firm essentially locates in the same place

- Hotelling can also be done in a discreet setting
- Hotelling can be applied to a variety of situations (eeg., voting)
- But this predicts the opposite of polarization
- With three candidates, predictions are quite different
- All candidates picking $\frac{1}{2}$ is no longer a Nash equilibrium
-What are the set of pure strategy equilibria here? (this is a difficult problem).

