Lecture 14

martes, 21 de abril de 2020 03:01 p. m.

图
Lecture14

Lecture 14: Game Theory // Nash equilibrium
Mauricio Romero

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Mixed strategies

- This game is entirely stochastic (ability has nothing to do with your chances of winning)

Mixed strategies
Consider rock/paper/scissors

$$
\begin{array}{|c|c|c|c|}
\hline & \text { Rock } & \text { Paper } & \text { Scissors } \\
\hline \text { Rock } & 0,0 & -1,1 & 1,-1 \\
\hline \text { Paper } & 1,-1 & 0,0 & -1,1 \\
\hline \text { Scissors } & -1,1 & 1,-1 & 0,0 \\
\hline
\end{array}
$$

- This game is entirely stochastic (ability has nothing to do with your chances of (intig)
- The probability of winning with every strategy is the same

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play

Mixed strategies

Consider rock/paper/scissors

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- The probability of winning with every strategy is the same
- Thus, people tend choose randomly which of the three options to play
- We would like the concept of Nash equilibrium to reflect this

A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays s_{i}

Mixed strategies
Definition
A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that

$$
\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays s
- A pure strategy is simply a mixed strategy σ_{i} that plays some strategy $s_{i} \in S_{i}$ $S_{i} \quad \sigma_{i}\left(S_{i}\right)=1$

Mixed strategies
 Definition
 A mixed strategy σ_{i} is a function $\sigma_{i}: S_{i} \rightarrow[0,1]$ such that
 $$
\sum_{s_{i} i S_{i}} \sigma_{i}\left(s_{i}\right)=1
$$

- $\sigma_{i}\left(s_{i}\right)$ represents the probability with which player i plays
- A pure strategy is simply a mixed strategy σ_{i} that plays some strategy s_{i} - S_{i}
- We will denote the set of all mixed strategies of player i by Σ_{i}

Mixed strategies

- Given a mixed strategy profile $\sigma_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}}$, we need a way to define how

Mixed strategies

- Given a mixed strategy profile ($\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$), we need a way to define how
players evaluate payoffs of mixed strategy profiles

Mixed strategies

- Given a mixed strategy profile ($\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$), we need a way to define how
players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors $\begin{aligned} & \left.\text { with probability } \frac{1}{2} \text { (ie., } \sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right) \\ & \text { The expected utility of playing "rock" is }\end{aligned} \quad \mathrm{V}(\mathrm{ZOCA}, \mathrm{ZOCA})=0 \rightarrow \square \mathrm{COB}=0$

Mixed strategies

- Given a mixed strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$
u_{1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\sum_{s \in S} u_{1}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \sigma_{1}\left(s_{1}\right) \sigma_{2}\left(s_{2}\right) \cdots \sigma_{n}\left(s_{n}\right)
$$

- For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\left.\sigma_{-i}=\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- The expected utility of playing "rock" is

$$
E\left(U_{i}\left(\text { rock }, \sigma_{-i}\right)\right)=-1 \frac{1}{2}+1 \frac{1}{2}=0
$$

- If I'm randomizing over rock and scissors (ie., $\sigma_{i}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ then

$$
E\left(U_{i}\left(\sigma, \sigma_{-i}\right)\right)=\underbrace{-1 \frac{1}{4}}_{\text {rock vs paper }}+\underbrace{1 \frac{1}{4}}_{\text {rock us scissors }}+\underbrace{1 \frac{1}{4}}_{\text {scissors vs paper }}+\underbrace{0 \frac{1}{4}}_{\text {scissors ss scissors }}=\frac{1}{4}
$$

Definition
A (possibly mixed) strategy profile $\left(\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}\right)^{*}$ is a Nash equilibrium if and only if
for every $i_{\text {i }}$
for all $\sigma_{i} \in \Sigma_{i .} \quad u_{i}\left(\sigma_{i}^{*}, \sigma_{i}^{*}\right) \Theta^{u_{i}\left(\sigma_{i}, \sigma_{i}^{*}\right)}$
Mixed strategies

$$
\begin{aligned}
& \text { Definition (Mixed Strategy Dominance Definition A) } \\
& \text { Let } \sigma_{i}, \sigma_{j}^{\prime} \text { be two mixed strategies of player } i \text {. Then } \sigma_{i} \text { strictly dominates } \sigma_{i}^{\prime} \text { if for all } \\
& \text { mixed strategies of the opponents, } \sigma_{-i} \text {, } \\
& \qquad u_{i}\left(\mathcal{j}_{-}, \sigma_{-i}\right)>u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right) .
\end{aligned} \forall \sigma_{-i \in} \quad l
$$

Mixed strategies

If σ_{i} is better than σ_{i}^{\prime} no matter what pure strategy opponents play, then σ_{i} is also
strictly better than σ_{i}^{\prime} no matter what mixed strategies opponents play
Theorem
Let σ and
Let σ_{i} and $\sigma_{\sigma^{\prime}}^{\prime}$ be two mixed strategies of player i. Then σ_{i} strictly dominates σ_{i}^{\prime} if and
only f if for all $s_{-i} \in S_{-i}$,

Proof- Part 1

- Since $S_{-i} \subseteq \sum_{-i,}$ if σ_{i} strictly dominates o
Then for all $s_{i-i} \in S_{-i,}$

Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{i}$
$u_{i}\left(\underline{\left.\sigma_{i}, s_{i}\right)}>u_{i}\left(\sigma_{-}^{\prime}, s_{-i}\right)\right.$

Proof - Part 2

- To prove the other direction, suppose that for all $s_{-i} \in S_{-i}$

Proof - Part 2

- To prove the other direction, suppose that for all $s, i \in S$,

Mixed strategies

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

- There are two pure strategy equilibrial (G, G) and (P, P)

Battle of the sexes

	G	P
G	$\underline{2}, \underline{1}$	0,0
P	0,0	$\underline{1}, \underline{2}$

- There are two pure strategy equilibrial (G, G) and (P, P)
- We now look for Nash equilibria that involve randomizationby the players

Battle of the sexes

- Let De the probability with which player 1 chooses G and (G) e the probability

$$
\sigma_{1}=\left(\lambda_{1}-\lambda\right)^{\prime} \quad \sigma_{2}=(q, 1-q)
$$

Battle of the sexes

- Let λ be the probability with which player 1 chooses G and q be the probability
with which player 2 plays G (,$P)$

Battle of the sexes

- Let λ be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

$$
\begin{aligned}
& \text { - } U_{1}\left(\theta_{1}, \sigma_{2}\right)=2 \lambda q+(1-\lambda)(1-q) \\
& =2 \lambda q+1-\lambda-q+\lambda q \\
& =3 \lambda q-\lambda-q+1 \\
& U_{1}\left(\sigma_{1}, \sigma_{2}\right)=\lambda \underbrace{3 q-1}_{N 1})+\underbrace{1-q}_{N z} \\
& U_{4} \text { col } \quad \mathrm{N}_{1}>0 \cdot(3 q-1>0) \Rightarrow \lambda=1 \\
& N_{1}=0 \quad(39-1=0) \Rightarrow \lambda \in[0,1] \quad P(60 \text { (Fro })
\end{aligned}
$$

Battle of the sexes

- Let λ be the probability with which player 1 chooses G and q be the probability
with which player 2 plays G
$u_{1}(\lambda, q)=2 \lambda q+(1-\lambda)(1-q)$.
-Case 1 : If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is
- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is

Battle of the sexes

- Let λ be the probability with which player 1 chooses G and q be the probability
with which player 2 plays G
$u_{1}(\lambda, q)=2 \lambda q+(1-\lambda)(1-q)$.
- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is
- Case 2 : if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is $\lambda \in[0,1]$

Battle of the sexes

- Let λ be the probability with which player 1 chooses G and q be the probability with which player 2 plays G
$u_{1}(\lambda, q)=2 \lambda q+(1-\lambda)(1-q)$.
- Case 1 : If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is
- Case 2: if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is
$\lambda \in[0,1]$
- Case 3: If $q<1 / 3$, then $2 q<2 / 3<1-q$ and therefore the best response is

Battle of the sexes

-Let λ be the probability with which player 1 chooses G and q be the probability
with which player 2 plays G
$u_{1}(\lambda, q)=2 \lambda q+(1-\lambda)(1-q)$.

- Case 1: If $q>1 / 3$, then $2 q>2 / 3>1-q$ and therefore, the best response is
- Case 2 : if $q=1 / 3$, then $2 q=2 / 3=1-q$ and therefore, the best response is $\lambda \in[0,1]$
- Case 3: If $q<1 / 3$, then $2 q<2 / 3<1-q$ and therefore the best response is
- Thus, the best response function is given by:

$$
B R_{1}(q)= \begin{cases}1 & \text { if } q>1 / 3 \\ {[0,1]} & \text { if } q=1 / 3 \\ 0 & \text { if } q<1 / 3 .\end{cases}
$$

$$
\begin{aligned}
& =\lambda q+2-2 \lambda-2 q+2 \lambda q \\
& =3 \lambda q-2 \lambda+2-2 q \\
& v_{2}\left(\theta_{1}, \theta_{\varepsilon}\right)=q(3 \lambda-2)+2-2 \lambda \\
& \text { (2, } \\
& M R_{2}\left(\theta_{1},(\lambda, 1-\lambda)\right)=\left\{\begin{array}{cc}
q=1 \\
\vdots \\
\sigma_{2}=(1,0) & \lambda>2 / 3 \\
\sigma_{2}=[1,-q) & q \in\left[0_{0}\right] \\
\lambda=2 / 3 \\
\sigma_{2}=(0,1) & \lambda<2 / 3
\end{array}\right. \\
& \nabla_{2}=(0,1) \quad \lambda<2 / 3
\end{aligned}
$$

Similarly we can calculate the best response function for player 2 and we get:
$B R_{2}(\lambda)= \begin{cases}1 & \text { if } \lambda>2 / 3 \\ {[0,1]} & \text { if } \lambda=2 / 3 \\ 0 & \text { if } \lambda<2 / 3 .\end{cases}$
ano......2. $=$ nac
Battle of the sexes

- There are three points where the best response curves cross: $(1,1),(0,0),,\left(\frac{2}{3}, \frac{1}{3}\right)$

Battle of the sexes

- There are three points where the best response curves cross: $(1,1),(0,0),,\left(\frac{2}{3}, \frac{1}{3}\right)$ - First two are the pure strategy NE we had found before

Battle of the sexes

- There are three points where the best response curves cross: $(1,1),(0,0),,\left(\frac{2}{3}, \frac{1}{3}\right)$
- First two are the pure strategy NE we had found before
- Last is a strictly mixed NE: both players randomize

Consider the following game

C	4,2	8,7	3,8

6 Domina F
D Donna B

- Consider $\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)$
- Consider $\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)$
- $\mathbb{E} U\left(E, \sigma_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Consider $\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)$
- $\mathbb{E} U\left(E, \sigma_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \sigma_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- Consider $\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)$
- $\mathbb{E} U\left(E, \sigma_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \sigma_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- $\mathbb{E} U\left(G, \sigma_{1}\right)=4 \frac{1}{3}+6 \frac{1}{4}+8 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Consider $\sigma_{1}=\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}\right)$
- $\mathbb{E} U\left(E, \sigma_{1}\right)=10 \frac{1}{3}+4 \frac{1}{4}+2 \frac{1}{4}+4 \frac{1}{6}=5.5$
- $\mathbb{E} U\left(F, \sigma_{1}\right)=3 \frac{1}{3}+2 \frac{1}{4}+4 \frac{1}{4}+3 \frac{1}{6}=3$
- $\mathbb{E} U\left(G, \sigma_{1}\right)=4 \frac{1}{3}+6 \frac{1}{4}+8 \frac{1}{4}+4 \frac{1}{6}=5.5$
- Then $B R_{2}\left(\sigma_{1}\right)=\{(p, 0,1-p), p \in[0,1]\}$
- G dominates F (player 2)
- G dominates F (player 2)
- D dominates B (player 1)

- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$

$$
\begin{aligned}
& g_{\sigma=2}=(p, 1,-p) \\
& v_{1}\left(q_{1}, 0_{2}\right)=5 \cdot q+3(1-q)=3+2 q \\
& U_{t}(0,0,0)=2 \cdot q+8(1-q)=8-6 q \\
& \operatorname{men}\left(\sigma_{c}\right) \text { as (A) Si } \begin{array}{l}
3+2 q>8-6 q \\
8 q>5
\end{array} \\
& q>518 \\
& M R_{1}\left(\sigma_{2}\right) \in S \text { S1 } 3+2 q<8-67 \\
& \text { q } 45 / 8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gures } A \text { y } D
\end{aligned}
$$

- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \sigma_{2}\right)=5 q+3(1-q)=2 q+3$
- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \sigma_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \sigma_{2}\right)=2 q+8(1-q)=8-6 q$
- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \sigma_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \sigma_{2}\right)=2 q+8(1-q)=8-6 q$
- $8-6 q>2 q+3$ if $\frac{5}{8}>q$
- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$

$$
\begin{aligned}
& \text { - } \mathbb{E} U\left(A, \sigma_{2}\right)=5 q+3(1-q)=2 q+3 \\
& -\mathbb{E} U\left(D, \sigma_{2}\right)=2 q+8(1-q)=8-6 q \\
& >8-6 q>2 q+3 \text { if } \frac{5}{8}>q \\
& >8-6 q<2 q+3 \text { if } \frac{5}{8}<q
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENIET A }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
U_{2}\left(\sigma_{1}=\left(P_{1}-P\right), E\right)=10 p+4(1-P)=4+6 P \\
U_{2}\left(\theta_{1}=(P, 1-P), \sigma\right)=4 p+4(1-D)=4
\end{array}
\end{aligned}
$$

$M Z_{2}\left(0_{1}\right) E \quad S 14+6 p 24$

$\operatorname{MRz}_{2}\left(\theta_{1}\right) 6$ si $4>4+6 p$

- Lets find $B R_{1}\left(\sigma_{2}=(q, 1-q)\right)$
- $\mathbb{E} U\left(A, \sigma_{2}\right)=5 q+3(1-q)=2 q+3$
- $\mathbb{E} U\left(D, \sigma_{2}\right)=2 q+8(1-q)=8-6 q$
- $8-6 q>2 q+3$ if $\frac{5}{8}>q$
- $8-6 q<2 q+3$ if $\frac{5}{8}<q$
- Thus

$$
B R_{1}(q, 1-q)= \begin{cases}\sigma_{1}=(0,1) & \text { if } 0 \leq q<\frac{5}{8} \\ \sigma_{1}=(1,0) & \text { if } \frac{5}{8}<q \leq 1 \\ \sigma_{1}=(p, 1-p) & \text { if } \frac{5}{8}=q\end{cases}
$$

- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\sigma_{1}, E\right)=10 p+4(1-p)=6 p+4$

- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\sigma_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\sigma_{1}, G\right)=4 p+4(1-p)=4$
- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\sigma_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\sigma_{1}, G\right)=4 p+4(1-p)=4$
- $6 p+4>4$ if $p>0$
- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\sigma_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\sigma_{1}, G\right)=4 p+4(1-p)=4$
- $6 p+4>4$ if $p>0$
$-6 p+4<4$ if $p<0$.
- Lets find $B R_{2}\left(\sigma_{1}=(p, 1-p)\right)$
- $\mathbb{E} U\left(\sigma_{1}, E\right)=10 p+4(1-p)=6 p+4$
- $\mathbb{E} U\left(\sigma_{1}, G\right)=4 p+4(1-p)=4$
$-6 p+4>4$ if $p>0$
$-6 p+4<4$ if $p<0$.
- Thus

$$
B R_{2}(p, 1-p)= \begin{cases}\sigma_{2}=(1,0) & \text { if } p>0 \\ \sigma_{2}=(q, 1-q) & \text { if } p=0\end{cases}
$$

Best responses

$N E=\left\{(A, E),\left(D, \sigma_{2}^{q}\right)\right\}$ where $\sigma_{2}^{q}=(q, 1-q)$ and $0 \leq q \leq \frac{5}{8}$

