Lecture 15

martes, 21 de abril de 2020 03:02 p.m.

Lecture15

Lecture 15: Game Theory // Nash equilibrium	
Mauricio Romero	

Lecture 15: Game Theory // Nash eq	uilibrium	
Nash's Theorem		
Dynamic Games		
	< 日 > < 回 > < 同 > < 同 > <	≣⊳ ≣ ∽ ೩୯

Lecture 15: Game Theory // Nash equi	librium
Nash's Theorem	
Dynamic Games	

Theorem (Nach's Theore			
Suppose that the pure stra always exists.	m) tegy set S _i is finite SCT, GN	for all players i. A Nash equil	ibrium MIKTAS
			,
		< 日 > < 西 > <	

Proof (just the intuition)		
Proof is very similar to general e	equilibrium proof	
	< 口 > < 個 > < 注 > < 注 > < 注 > < 注 > 注 = .	500

Proof (just the intuition)			
Proof is very similar to general equ	ilibrium proof		
Two parts:			
		< 口 > < 回 > < 三 >	< 三 ト 三 の Q の Q の

Proof (just the intuition)	
Proof is very similar to general equilibrium proof	
► Two parts:	
1. A Nash equilibrium is a fixed point of the best response	functions

Proof (just the intuition)	
Proof is very similar to general ed	quilibrium proof
Two parts:	
1. A Nash equilibrium is a fixed p	oint of the best response functions
2. A finite game with mixed strate	egies has all the pre-requisites to guarantee a fixed
point	
	・日、「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」

Proof (just the intuition)
Proof is very similar to general equilibrium proof
► Two parts:
1. A Nash equilibrium is a fixed point of the best response functions
2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed point
▶ Remember X^* is a fixed point of $F(X)$ if and only if $F(X^*) = X^*$
シック・ボットボット 雪ット コッ

Proof - Part 1		
► Let (s*s*) be a Nash equili	orium	
	ヘロア ヘロア ヘボア ヘ	■ ■ ● ● ● ●

Proof - Part 1		
• Let $(s_1^*,, s_n^*)$ be a Nash equilib	prium	
$\blacktriangleright \text{ Then } s_i^* = BR_i(s_{-i}^*) \text{ for all } i$		
	< □ > < 酉 > < ≥ > < 1	I → I →QQ

Proof - Part 1	
► Let $(s_1^*,, s_n^*)$ be a Nash equilibrium	
► Then $s_i^* = BR_i(s_{-i}^*)$ for all <i>i</i>	
► Let $\Gamma(s_1,, s_n) = (BR_1(s_{-1}), BR_2(s_{-2}),, BR_n(s_{-n}))$	
$ \ \ \Gamma(s_1^*,,s_n^*)=(s_1^*,,s_n^*)$	
	< ロ > < 団 > < 言 > < 言 > 、 言 、 の Q (や

Proof - Part 1	
► Let $(s_1^*,, s_n^*)$ be a Nash equilibrium	
► Then $s_i^* = BR_i(s_{-i}^*)$ for all <i>i</i>	
• Let $\Gamma(s_1,, s_n) = (BR_1(s_{-1}), BR_2(s_{-2}),, BR_n(s_{-n}))$	
$\blacktriangleright \ \Gamma(s_1^*,,s_n^*) = (s_1^*,,s_n^*)$	
• Therefore $(s_1^*,, s_n^*)$ is a fixed point of Γ	
	<ロ> < 四> < 回> < 回> < 回> < 回> < 回> < 回> < 回

Proof - Part 2			
Theorem (Kakutani fixed-point th Let $\Gamma : \Omega \rightarrow \Omega$ be a correspondence compact (closed and bounded), and	eorem) that is upper semi-conti convex $\Rightarrow \Gamma$ has at leas	inuous, Ω be r st one fixed po	non empty, int
		< • > < />	4 E > 4 E > 4 E > 4 E >

Proof - Part 2 So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then $\Gamma: \Sigma \to \Sigma$

Si Sz

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)

Proof - Part 2	
So we want to apply Kakutani's the strategies then	orem. If the game is finite and we allow mixed
$\blacktriangleright \ \Gamma: \Sigma \to \Sigma$	
\blacktriangleright Σ is compact: It includes the b	oundary (pure strategies) and is bounded (the
game only has a finite set of st	rategies)
	<ロ> <週> <差> <差> <差> 多へ

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \triangleright Σ is convex: By allowing mixed strategies, we automatically make it convex

シック 川 エル・エー・ キャー・

xP+(1-x) + x6[0,5]

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \triangleright Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?

・ロト・日本・日本・日本・日本・日本

くして 山 ふかく ふてん 白マ ひょう

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \triangleright Σ is convex: By allowing mixed strategies, we automatically make it convex
- ► $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?
 - ▶ If two pure strategies are in the best response of a player $(s_i, s'_i \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i})$)

So w strat	want to apply Kakutani's theorem. If the game is finite and we allow mixed ies then
•	$\Sigma \to \Sigma$
•	is compact: It includes the boundary (pure strategies) and is bounded (the ame only has a finite set of strategies)
	is convex: By allowing mixed strategies, we automatically make it convex
•	$(s_1,, s_n) = (BR_1(s_{-1}), BR_2(s_{-2}),, BR_n(s_{-n}))$ is upper semi-continous. Why?
	▶ If two pure strategies are in the best response of a player $(s_i, s'_i \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i})$)
	Therefore if Γ(s ₁ ,, s _n) has two images, those two images are connected (via all the mixed strategies that connect those two images)
	くしゃ (中) (山) (山) (山) (山) (山) (山) (山) (山) (山) (山

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \triangleright Σ is convex: By allowing mixed strategies, we automatically make it convex
- ► $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?
 - ▶ If two pure strategies are in the best response of a player $(s_i, s'_i \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i})$)
 - Therefore if Γ(s₁,..., s_n) has two images, those two images are connected (via all the mixed strategies that connect those two images)

きょうかい 加 ふゆやんりゃんしゃ

► That happens to be the definition of upper semi-continous

Lecture 15: Game Theory // Nash equilibrium	
Nash's Theorem	
Dynamic Games	
	< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < つ へ ()

Lecture 15: Game Theory // Nash equ	uilibrium
Nash's Theorem	
Dynamic Games	
	ヘロア へ回ア へがア かんの

 Dynamic game are those that can know what others did before pla 	apture a dynamic element in which some players aying	
	< 口 > < 団 > < 差 > < 差 >	≣ <i>•</i>) < (~

 Dynamic game are those that cap know what others did before playi 	oture a dynamic element in which some players ing	
Reminder: A (pure) strategy is a information set	complete contingent plan of action at every	
		= *) ((*

 Dynamic game are those that capture a dynamic element in which some players know what others did before playing
Reminder: A (pure) strategy is a complete contingent plan of action at every information set
The set of Nash equilibria of the extensive form game is simply the set of all Nash equilibria of the normal form representation of the game
りょう 神 (中)・(中)・(日)・

 Dynamic game are those that know what others did before p 	capture a dynamic element in which some players laying
 Reminder: A (pure) strategy is information set 	a complete contingent plan of action at every
The set of Nash equilibria of the equilibria of the normal form reader	ne extensive form game is simply the set of all Nash epresentation of the game
Some of the equilibria do not r	make much sense intuitively
	<日><回><回><回><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

	f a e -3,-1 2,1 x 0,2 0,2
Two Nash equilibria: (x,f) y (e,a).	
	< □ > < 問 > < 분 > < 분 →) Q (~

But (x,f) is a Nash equilibrium	only because Firm 2 threatens to do a price war	
	< □ > < 团 > < 토 > < 토 > < 토 > < 토 > · (토 > · 토 ·)) Q (?

But (x,f) is a Nash equilibrium	only because Firm 2 threatens to do a price	war
But f is not a credible strategy		
	<ロ > < 酉 > < 差 > <	■ ■ ୬୯୯

But (x,f) is a Nash equilibrium	only because Firm 2 threatens to do a price war
But f is not a credible strategy	
► If Firm 1 enters the market, Fire	m 2 will accommodate
	〈 日 〉 〈 明 〉 〈 明 〉 〈 明 〉 〈 明 〉 〈 明 〉 ()

But (x,f) is a Nash equilibrium	only because Firm 2 threater	ns to do a price war
But f is not a credible strategy		
► If Firm 1 enters the market, Fire	m 2 will accommodate	
We will study a refinement that	will get rid of these type of	equilibria
		< ロ > < 団 > < ミ > < ミ > ミ の < C

But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
But f is not a credible strategy
If Firm 1 enters the market, Firm 2 will accommodate
We will study a refinement that will get rid of these type of equilibria
The everall idea is that around must play an entimal action in each node
I ne overall idea is that agents must play an optimal action in each node

・ロト (四) (川) (山) (山) (山)

- But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
 But f is not a credible strategy
 If Firm 1 enters the market, Firm 2 will accommodate
 We will study a refinement that will get rid of these type of equilibria
 The overall idea is that agents must play an optimal action in each node
 In other words, play an optimal action in each node, conditional on reaching such node
 - But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
 - But f is not a credible strategy
 - ▶ If Firm 1 enters the market, Firm 2 will accommodate
 - ► We will study a refinement that will get rid of these type of equilibria
 - ► The overall idea is that agents must play an optimal action in each node
 - In other words, play an optimal action in each node, conditional on reaching such node

ふりっつ 川 へ川マネルママネ

► In the previous example, f is not optimal if we reach the second period

A natural way to make sure play game via backwards induction	yers are optimizing in	each node is to solv	ve the	
		< = > < @ > < E	▶ < 분 ► 분	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A natural way to make sure players are optimizing in each node game via backwards induction	is to solve the
This amounts to starting from the end of the game, and work the by eliminating non-optimal strategies	ne way backwards
e 2 a (2,1)	(20
(2,2) provention	2541470 - (7

A natural way to make sure players are optimizing in each node is to solve the game via backwards induction	
This amounts to starting from the end of the game, and work the way backwards by eliminating non-optimal strategies	
(미 > (편 > (분 > (분 > (분 > (원 >))))))))))))))))))))))))))))))))	
A natural way to make sure players are optimizing in each node is to solve the game via backwards induction	
This amounts to starting from the end of the game, and work the way backwards by eliminating non-optimal strategies).A seprez
Theorem (Zermelo)	MauroDolv (Mas o MENOS)
information), has an Nash equilibrium that can be derived via backwards induction. If	· TONOFOO /
unique.	· CONECTA 4
(日)(週)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)	NO-T7Poter
	176ATO NO LOOPE
Theorem (Zarmala II) A NODO POIZ CONSUNTO FINE	
In any finite two-person game of perfect information in which the players move	-760
alternatingly and in which chance does not affect the decision making process, if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. force a win).	

Can't be solved by backwards indu	iction	
	< 日 > < 酉 > < 直 > <	E ▶ E ♪ へ (?)

Can't be solved by backwards induction	
Thus, we need something else	
	◆□ ◇ ▲□ ◇ ▲□ ◇ ▲□ ◇ ▲□ ◇ ▲□ ◇ ▲□ ◇ ▲□ ◇

Can't be solved by backwards induction	
Thus, we need something else	
First, we need to defined a subgame	
	むすの 加 エル・エル・エー・

	DELINICION
A sub-game, of a game in extensive form, is a sub-tree such that	
► It starts in a single node	
If contains a node, it contains all subsequent nodes	
If it contains a node in an information set, it contains all nodes in the inform	nation
set	
明》《谢》《图》《日》	▶ 重 め Q (や)
Definition	
A subgame of an extensive form game is the set of all actions and nodes that foll particular node that is not included in an information set with another distinct no	ow a de
- キャット - マン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ	▶ 言 ∽ < ♀

By definition, the original game is a subgame		
	< □ > < @ > < 분 > < 분 > 분	596

Since in some games (where multiple nodes are in the same information set) we can't formally choose how people are optimizing, we extend the notion of backwards induction to subgames

Definition (Subgame perfect Nash equilibria)

A pure strategy profile is a Subgame perfect Nash equilibria (SPNE) if and only if it involves the play of a NE in every subgame of the game.

involves the play of a NE in every subgame of the game.	Jiggo (oni
(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(E
Remark	
Every SPNE is a NE Remark As in normal form games, mixed strategy SPNE can be defined but this is a bit technical. Thus, we will not worry about it for the purposes of the course.	
(日)	$\gamma) [\Lambda [B, MA]$
$\int \int \frac{2}{x} \frac{x}{3}$	$\sum_{i} = \int UH_{i} UH_{i} U_{i}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>z = J X, Y Y,
M 5,5 D'FORMA	CSUBSUEGO
(D) (B) (E) (E) E DQC	CSUBJUCGO LY V(
Subbo Completo ENa (LB,X); (MB))	22 - 71,12

DEPS ES UN EN. SUBSCECC

The game has 3 NE: (LB,X), (MA,Y),(MB,Y)	
The subgame has a single NE: (B,X)	
► The SPNE is (LB,X)	
	< ロ > < 問 > < 言 > < 言 > う 見 ()

MACIA ATIZAS CL RESULTATO ES CONSUNTO E

