

$$
\begin{aligned}
& \left(h S_{1}=1,000, S_{2}(x)=\begin{array}{ll}
A & x<1,000 \\
i r & x=1,000
\end{array}\right) \begin{array}{l}
\text { No } \in \perp \text { ES } \\
\text { PosS } S_{2} \text { SE } \\
\text { QuiRE DQUIAR }
\end{array} \\
& E N \Rightarrow G^{\prime} N_{0} \operatorname{SCA} E P S \text {. }
\end{aligned}
$$

- In any pure strategy SPNE, player 2 accepts all offers
- In any SPNE, player 1 makes the proposal $(900,100)$
- This is far from what happens in reality
- This is far from what happens in reality
- When extreme offers like $(900,100)$ are made, player 2 rejects in many cases
- This is far foom what happens in reality
- When extreme offers ike (900, 100) are made, player 2 rejects in many cases

Player 2 may care about inequality or postive utility associated with
"punisment" averion

Lecture 16: Applications of Subgame Perfect Nash Equilibrium

Ultimatum Game
Altemating offers
Stackeleerg Competition

Lecture 16: Applications of Subgame Perfect Nash Equilibrium

Alternating offers
-Two players are deciding how to split a pie of size

- Two players are deciding how to splita pie of size 1
- The players would rather get an agreement today than tomorrow (i.e, discount
factor)
- Payer 1 makes an offer θ_{1}

Player 1 makes an offer θ_{1}
Player 2 accepts or rejects the proposal

- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 2 rejects, player 2 makes an offer θ_{2}
- If player 1 accepts or rejects the proposal
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 2 rejects, player 2 makes an offer θ_{2}
- If player 1 accepts or rejects the proposal
- If player 1 rejects, player 1 makes an offer θ_{3}
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 2 rejects, player 2 makes an offer θ_{2}
- If player 1 accepts or rejects the proposal
- If player 1 rejects, player 1 makes an offer θ_{3}
- ... and on and on for T periods
- Player 1 makes an offer $\theta_{\Omega} \longrightarrow($ Gr, 1-Q, $)$
$\xrightarrow[-]{\text { Player } 2 \text { accepts yer } 2 \text { rejects, player } 2 \text { makes an offer } \theta_{2}}\left\langle\left(1-\theta_{2}, \theta_{2}\right) \quad 0 \in[0,1\right.$
- If player 1 accepts or rejects the proposal 1 rejects, player 1 makes an offer $\theta_{3} \delta^{2}(4,1-63)$
- ... and on and on for T periods
- If no offer is ever accepted, both payoffs equal zero

The discount factor is $\delta \leq 1$.
If Player 1 offer is accepted by Player 2 in round m.

$$
\begin{aligned}
& \pi_{1}=\delta^{m} \theta_{m}, \\
& \pi_{2}=\delta^{m}\left(1-\theta_{m}\right)
\end{aligned}
$$

- Consider first the game without discounting

There is unique SPNE:

Consider first the game without discounting

- There is a unique SPNE:

Consider first the game without discounting
-There is a unique SPNE: The player that makes the last offer gets the whole pie
$\xrightarrow{\text { Last-mover advantage }}$

- In the game with discouting, the total value of the pie is 1 in the first period, δ
in the second, and so forth

In the game vith discounting, the total value of the pie is in in the first period, δ
in the second, and so of orth
in the second, and so forth
Assume Player 1 makes the last offer

- In the game with discounting, the total value of the pie is 1 in the first period, δ
- Assume Player 1 makes the last offer
- In period T, fitit is reached, Player 1 would offer 0 to Player 2
- In the game with discounting, the total value of the piei is 1 in the first period, δ
- Assume Player 1 makes the last offer
- In period T, if it it serached, Player 1 would offer 0 to Player 2
- Player 2 would accept (indififerent between accepting and rejecting)

In the game with discounting, the total value of the pie is 1 in the first period, δ
in the second, and so forth

- Assume Player 1 makes the last offer
- In period T, if it is reached, Player 1 would offer 0 to Player 2
- Player 2 would accept (indifferent between accepting and rejecting)
- In period $(T-1)$, Player 2 could offer Smith δ, keeping $(1-\delta)$ for himself
$\delta=0.90$
 in the second, and so forth
Assume Player 1 makes the last offer
- In period T, if it is reached, Player 1 would offer 0 to Player 2
- Player 2 would accept (indifferent between accepting and rejecting)
- In period $(T-1)$, Player 2 could offer δ, keeping $(1-\delta)$ for himself
- Player 1 would accept (indifferent between accepting and rejecting) since the
whole pie in the next period is worth δ

In period $(T-2)$, Player 1 would offer Player $2 \delta(1-\delta)$, keeping $(\underset{\sim}{(1-\delta(1-\delta)})$
for himself

$$
\text { Tacos } \delta^{T-2}(1-\delta(1-\delta), \delta(1-\delta))
$$

$-\begin{aligned} & \text { In period }(T-2) \text {, Player } 1 \text { would offer Player } 2 \delta(1-\delta) \text {, keeping }(1-\delta(1-\delta)) \\ & \text { for himself }\end{aligned}$ for himself

- Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth

$$
\begin{aligned}
& \delta^{(-1}\left(\delta_{1} \xrightarrow{1-\delta)}\right.
\end{aligned}
$$

$-\begin{aligned} & \text { In period (}(T-2) \text {, Player } 1 \text { would offer Player } 2 \delta(1-\delta) \text {), keeping }(1-\delta(1-\delta)) \\ & \text { for himseff }\end{aligned}$

- Player 2 would acceppt since he can earn $(1-\delta)$ in the next period, which is worth
$\delta(1-\delta)$ today

- In period ((-2), Player 1 would offer Player $2 \delta(1-\delta)$), keeping $(1-\delta(1-\delta))$
- Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth
$\delta(1-\delta)$ today - In period $(T-3)$) Payer 2 would offer Player $1 \delta(1-\delta(1-\delta)$, , keping
$(1-\delta(1-\delta(1-\delta))$) for himself
- Payer 1 would accept..
- In period (T-2), Player 1 would offer Player $2 \delta(1-\delta)$, keeping $(1-\delta(1-\delta))$ - Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth
$\delta(1-\delta)$ today - In period $(T-3)$) Payer 2 would offer Player $1 \delta(1-\delta(1-\delta)$, keeping
$(1-\delta(1-\delta(1-\delta))$ for himseff - Player 1 would accept..
- ...
- In period ((-2)), Player 1 would offer Player $2 \delta(1-\delta)$, keeping ($1-\delta(1-\delta))$
- Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth
- In period $(T-3)$) Player 2 would ffer $\operatorname{Plyyer} 1 \delta[1-\delta(1-\delta)]$, keeping
$(1-\delta[1-\delta(1) \delta)])$ for himself
- Player 1 would accept...
- ...

In eauibibrium, the every fist offer would be eaceepted, since it is chosen precisisly so
that the other player can do no oetter by wating

$\operatorname{liphgos}(10)$
$T=4 \quad S_{2}$ frect ULTIRO

$$
\delta=1
$$

Recal back to the model of Courrot duopoly, where two firms set quantities
$-\begin{gathered}\text { Suppose instad that } \\ \text { competition game }\end{gathered}$

Sestar

Suppose that the invese demand function is given by:
$P\left(q_{1}+q_{2}\right)$.

Recall back to the model of Cournot duopoly, where two firms set quantities
Suppose instad that
competition game

- Suppose that the inverse demand function is given by:

F Firms have the cost functions $c_{i}\left(q_{i}\right)$

Te timing of the game is given by:

1. First Firm 1 chooses $q_{1} \geq 0$

2 Second Firm 2 observes the chosen q_{1} and then chooses q_{2}

The game tree in this game is then depicted by an infinite tree

Let us write down the normal form reperesentation of this game.

CPO

$$
\begin{gathered}
\frac{\partial \pi}{\partial q_{1}}=A-2 q_{1}-\frac{A}{2}+q_{1}=0 \\
\frac{A}{2}=q_{1}
\end{gathered}
$$

- Let us write down the normal form representation of this game.
- A pure strategy for firm 1 is just a choice of $q_{1} \geq 0$
- A strategy for firm 2 specifies what it does after every choice of q_{1}

CON EL EDS?

$$
q_{1}=\frac{A}{2}, q_{2}=\frac{A-(A / 2)}{2}=\frac{A}{4}
$$

- Let us write down the normal form representation of this game.
- A pure strategy for firm 1 is just a choice of $q_{1} \geq 0$
- A strategy for firm 2 specifies what it does after every choice of q_{1}
- Firm 2's strategy is a function $q_{2}\left(q_{1}\right)$ which specifies exactly what firm 2 does if q_{1} is the chosen strategy of player 1

The utility functions for firm i when firm 1 chooses q_{1} and firm 2 chooses the strategy (or function) $q_{2}(\cdot)$ is given by:

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}(\cdot)\right)=P\left(q_{1}+q_{2}\left(q_{1}\right)\right) q_{1}-c_{1}\left(q_{1}\right) \\
& \pi_{2}\left(q_{1}, q_{2}(\cdot)\right)=P\left(q_{1}+q_{2}\left(q_{1}\right)\right) q_{2}\left(q_{1}\right)-c_{2}\left(q_{2}\left(q_{1}\right)\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\pi_{1}\left(q_{1}, q_{2}\right)= & \left(A-q_{1}-q_{2}\right) q_{1} \\
= & \left(A-q_{1}-A / 4\right) q_{1} \\
C P O: \\
A-2 q_{1}-\frac{A}{q}=0 \\
\frac{3 A}{q}=2 q_{1} \\
\frac{3 A}{\theta}=q_{1}
\end{array}\right\} \begin{aligned}
& F_{1} \text { se Gurere } \\
& D \in S v i A+\quad D E A \\
& a \quad 3 A / 8
\end{aligned}
$$

TAre: dEn al no SeA EPS?

$$
\begin{aligned}
& \frac{A-q_{1}}{2}=q_{2} \\
& E=1 \\
& \pi_{1}\left(q_{1}, q_{2}\right)=p\left(q_{1}+q_{2}\right) q_{1}-C_{1}\left(q_{1}\right)
\end{aligned}
$$

- There are many Nash equilibria of this game which are a bit counterintutitive

There are many Nash equilibria of this game which are a bit counterintutitive
Coonsider the following specific game with demand function given by:
$P\left(q_{1}+q_{2}\right)=A-q_{1}-q_{2}$.

- There are many Nash equilibria of this game which are a bit counterintutitive
- Consider the following specific game with demand function given by:
$P\left(q_{1}+q_{2}\right)=A-q_{1}-q_{2}$.
- Let the marginal costs of both firms be zero
-There are many Nash equilibria of this same which area bit counterintutitive
- Consider the following specific zame with demand function given by $P\left(q_{1}+q_{2}\right)=A-q_{1}-q_{2}$.
Let the marginal costs of both firms be zero
-Then the normal form simplifies:
$u_{1}\left(q_{1}, q_{1}(\cdot)\right)=\left(A-q_{1}-q_{2}\left(q_{1}\right) q_{1}\right.$,
$u_{2}\left(q_{1}, q_{2}(\cdot)\right)=\left(A-q_{1}-q_{2}\left(q_{1}\right)\right) q_{1}\left(q_{1}\right)$.
- Let $\alpha \in[0, A)$ and consider the following strategy profile:
$q_{1}^{*}=\alpha, q_{2}^{*}\left(q_{1}\right)= \begin{cases}A & \text { if } q_{1} \neq \alpha, \\ \frac{A-\alpha}{2} & \text { if } q_{1}=\alpha .\end{cases}$

What is an example of a Nash equulibrium of this game
Let $\alpha \in[0, A)$ and consider the following strategy profilí
$q_{\mathrm{i}}^{*}=\alpha, q_{2}^{*}\left(q_{1}\right)=\left\{\begin{array}{cc}A & \text { if } q_{1} \neq \alpha, \\ \frac{-1}{2} & \text { if } q_{1}=\alpha\end{array}\right.$

Let us check that indeed this constitutes a Nash equilibiurn

First we check the best response of player 1

```
- Fist we check the best response of player 1
If player2 plas, (2, ther playe Is (u)
    u
```

- First we check the best response of player 1
If player 2 plays q^{2}, then player 1 's utility function is given by.
$u_{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)= \begin{cases}\left(A-\alpha-\left(\frac{A-\alpha}{2}\right)\right) \alpha>0 & \text { if } q_{1}=\alpha \\ -q_{1}^{2} \leq 0 & \text { if } q_{1} \neq \alpha .\end{cases}$
- Thus,
is solved at $q_{i}=\alpha$
Fist we check the best response of player 1
If player 2 plays q^{t}, then player 1 's utility function is given by:
$u_{1}\left(q_{1}, q_{2}^{*}()\right)= \begin{cases}\left(A-\alpha-\left(\frac{A-\alpha}{2}\right)\right) \alpha>0 & \text { if } q_{1}=\alpha \\ -q_{1}^{2} \leq 0 & \text { if } q_{1} \neq \alpha .\end{cases}$
- Thus,
$\max _{\substack{1 \\ q \geq 0}}^{\max _{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)}$
Firm 1 is best responding to player 2 's strategy.
- Suppose that firm 1 plays the strategy ${ }^{q}$ i. 15 firm 2 best responding

Suppose that firm 1 plays the strate
$u_{2}\left(q_{1}, q_{2}(\cdot)\right)=\left(A-\alpha-q_{2}(\alpha) q_{2}(\alpha)\right.$

- Suppose that firm 1 plays the strategy $q_{\text {: }}$ is If firm 2 best responding

Firm 2 's utility function is siven by
$\mu_{2}\left(q_{1} ; q_{2}(\cdot)\right)=\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$.

- Thus, firm 2 wants to choose the optimal strategy $q_{2}($ (). that maximizes the
following titily:
$\max _{q_{1}(1)}\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$
- Suppose that firm 1 plays the strategy $q^{\circ} .15$ firm 2 best responding?
- Firm 2 's utility function is iven by
$u_{2}\left(q_{i} ; q_{2}(\cdot)\right)=\left(A-\alpha-q_{2}(\alpha) q_{2}(\alpha)\right.$
Thus, firm 2 wants to choose the optimal strategy $q_{2}(\cdot)$ that maximizes the
following utilit: $\max _{q_{2}(1)}\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$
- By the first order condition, we know that
$q_{2}(\alpha)=\frac{A-\alpha}{2}$.
- Suppose that fim 1 plays the strategy q^{*}. 15 fimm 2 best responding?
- Firm 2 's utility function is given by.
$\nu_{2}\left(q_{i}^{*}, q_{2}().\right)=\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$
- Thus firm 2 wants to choose the optimal strategy q_{2} (.) that maximizes the $\max _{q_{2}(A)}\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$
By the fist order condition, we know that
$q_{2}(\alpha)=\frac{A-\alpha}{2}$.
The utility function of fim 2 does not depend at all on what it chosess for $q_{2}^{*}\left(q_{1}\right)$ when $q_{1} \neq \alpha$
- Suppose that firm 1 plays the strategy ${ }^{*}$. 15 firm 2 best responding?
- Firm 2 's utility function is siven by:
ion is given by.
$r_{2}\left(q_{1}^{*}, q_{2}(\cdot)\right)=\left(A-\alpha-q_{2}(\alpha) q_{2}(\alpha)\right.$.
- Thuss firim 2 wints to choose the optimal strategy $q_{2}(\cdot)$ that maximizes the
following utility:
$\max _{\alpha_{2}(\lambda)}\left(A-\alpha-q_{2}(\alpha)\right) q_{2}(\alpha)$
- By the first order condition, we know that
$q_{2}(\alpha)=\frac{A-\alpha}{2}$
The utility function of fimm 2 does not depend at all on what it chooses for $q_{(}^{*}\left(q_{1}\right)$
when $q_{1} \neq a$ - In particular, $q_{2}^{\text {i }}$ is a best response for firm 2

The above obseration allows us to conclude that there are many Nash equilibria of this game

The above observation allows us to conclude that there are many Nash equilibria
of this game
In fact there are many more than the ones above

The above observation allows us to conclude that there are many Nash equilibria
of this same

The Nash equilibria highighted above all lead to different preficitions

The above observation allows us to conclude that there are many Nash equilibria ,

- In fact there are many more than the ones above

The Nash equilibria highhighted above all lead to different predicitions
The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets
the price α and fim 2 sets the p pice $(A-\alpha) / 2$.

The above observation allows us to conclude that there are many Nash equilibria
In fact there are many more than the ones above
The Nash equilibria highighted above all lead to different predictions
The equilibrum outcome of the above Nash equilibrium above is that firm 1 sets
the price α a and firm 2 sets the price $(A-\alpha) / 2$.

- In paticicular in the Nash equilibrium coressonding to $\alpha=0$. the equilibrium
outcome is for fim 1 to choose a quantity of 0 and firm 2 setting a price of $A / 2$

The above observation allows us to conclude that there are many Nash equilibria
of this game In fact there are many more than the ones above
The Nash equilibria highlighted above all lead to different preficitions
The equilibrum outcome of the above Nash equilibrium above is that firm 1 sets
the price α a and firm 2 sets the p pice $(A-\alpha) / 2$.
In paticular) in the Nash equilibrium coresponding to $\alpha=0$, the equilibrium
outcome is for firm 1 to choose a quantity of 0 and firm
setting a pice of $A / 2$
This would be the same outcome if firm 2 were the monopolist in this market

Consider the equilibrium in which $\alpha=0$

- Consider the equilibrium in which $\alpha=0$

This equilibrium is highly counterintutitive because firm 2 obtains monopoly profits

- Consider the equilibrium in which $\alpha=0$
- This equilibrium is highly counterintutitive because firm 2 obtains monopoly profits

The reasosis is that essentially firm 2 is playing astrategy that ivolves
non-credibe threats
non-credible threats

Consider the equilibrium in which $\alpha=$

This equilibrium is highly counterintutitive because firm 2 ottains monopoly profits
The reason is shat essentially firm 2 is playing a strategy that involve
Firm 2 is threatening to overproduce if firm 1 produces anything at al

Consider the equilibrium in which $\alpha=0$

This equilibrium is highly counterintutitive because firm 2 obtains monopoly profits
The reasen is that essentially firm 2 is playing a strategy that involves
non-credible threats
Firm 2 is threatening to overproduce if firm 1 produces anything at al

- As a result, the best that firm 1 can do is to produce nothing
- Consider the equilibrium in which $\alpha=0$
-This equilibrium is highly counterintutive because firm 2 obtains monopoly profits
The reason is that essertially firm 2 is playing astrategy that involves
non-credible threats
FFim 2 is threatening to overproduce if firm 1 produces anything at al
As a result, the best that firm 1 can do is to produce nothing

Many Nash equilibria are counterintuitive in the Stackelberg game

Many Nash equilibria are counterintutitive in the Stackelberg game
To eliminate such counterintuitive equilibria, we focus insted on SPNE insted of
NE

- Many Nash equilibria rec counterintutitive in the Stackelberg game

To eliminate such counterintutivive equilibria, we focus instead on SPNE instead of

```
Lets continue with the setting in which marginal costs are erero ond the demand
```

 Auction is given by \(A-q_{1}-q_{2}\)
 - We elways start with the smallest/last subgames which correspond to the
- We always start with the smallest last subgames which corespond to the
-The utility function of fim 2 is given by:

```
u2(q
```

- We always stat with the smallest last subgames which corespond to the

The utility function of fim 2 is given by
$u_{2}\left(q_{1}, q_{2} \cdot(\cdot)\right)=\left(A-q_{1}-q_{2}\left(q_{1}\right) q_{2}\left(q_{1}\right)\right.$

- So, player 2 solves: $\underset{\substack{\text { max } \\ q_{1}(\mathcal{Y})}}{ }\left(-q_{1}-q_{2}\left(q_{1}\right)\right) q_{2}\left(q_{1}\right)$.
- Case 1: $q_{1}>A$

Case 1: $q_{1}>A$
 producing at all gives negative profits.

- Case 1: $q_{1}>A$

In this case, the best response of firm 2 is to set a quantity $q_{2}^{*}\left(q_{1}\right)=0$ since producing at all gives negative profits.

Case 2: $q_{1} \leq A$

Case 1: $q_{1}>A$
In this case, the best response of firm 2 is to seta a quantity $q_{2}^{*}\left(q_{1}\right)=0$ since
prococuing at al givives enegative profits.
Case 2: $q_{1} \leq A$
\rightarrow In this case, the first order condition implies:
$q_{2}^{*}\left(q_{1}\right)=\frac{A-q_{1}}{2}$.

Thus, in any SPNE, player 2 must play the folowwing strategy;

$$
q_{i}^{*}\left(q_{1}\right)= \begin{cases}\frac{A-a_{1}}{2^{2}} & \text { if } q_{1} \leq A \\ \text { if }_{1} q_{1}>A .\end{cases}
$$

Then player 1 's utility function given that player 2 plays $q_{z}{ }^{*}$ is given by:
$u_{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)=q_{1}\left(A-q_{1}-q_{2}^{*}\left(q_{1}\right)\right)= \begin{cases}q_{1}\left(A-q_{1}\right) & \text { if } q_{1}>A, \\ q_{1} \frac{A-q_{1}}{2} & \text { if } q_{1} \leq A .\end{cases}$

Then player 1 's utility function given that player 2 plays q^{*} is s given by: $u_{1}\left(q_{1}, q_{2}^{*}()\right)=q_{1}\left(A-q_{1}-q_{2}^{*}\left(q_{1}\right)\right)= \begin{cases}q_{1}\left(A-q_{1}\right. & \text { if } q_{1}>A, \\ q_{1} \frac{-\alpha, q_{2}}{2} & \text { if } q_{1} \leq A .\end{cases}$
-Thus, firm 1 maximizes max $x_{a}, u_{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)$

Then player 1's utility function given that player 2 plays q_{z}^{2} is given by
$u_{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)=q_{1}\left(A-q_{1}-q_{i}^{*}\left(q_{1}\right)\right)= \begin{cases}q_{1}\left(A-q_{1}\right) & \text { if } q_{1}>A, \\ q_{1} \frac{1}{2}-q_{1}^{2} & \text { if } q_{1} \leq A .\end{cases}$

- Thus, firm 1 maximizes max ${ }_{\sigma}, u_{1}\left(q_{1}, q_{q}^{*}(\cdot)\right)$
- Firm 1 will never choose $q_{1}>A$ since then it obtains negative profits

Then player I's utitiy function given that payer 2 plass q_{2} is given by $u_{1}\left(q_{1}, q_{2}^{*}(\cdot)\right)=q_{1}\left(A-q_{1}-q_{2}^{*}\left(q_{1}\right)\right)= \begin{cases}q_{1}\left(A-q_{1}\right) & \text { if } q_{1}>A, \\ q_{1} \frac{A-q_{1}}{2} & \text { if } q_{1} \leq A .\end{cases}$
-Thus, firm 1 maximizes maxa $u_{1} u_{1}\left(q_{1}, q_{q}^{*}(\cdot)\right)$
Firm 1 will never choose $q_{1}>A$ since then it obtains negative profits
Thus, firm 1 maximizes: $\underset{\substack{\max \\ \operatorname{man}_{1}}}{\frac{A-q_{1}}{2}}$.

The first order condition for this problem is given by:

The first order condition for this problem is given by:

The SPNE of the Stackeleberg game is given by:
$\left(q_{i}^{*}=\frac{A}{2}, q_{z}^{q}\left(q_{1}\right)=\frac{A-q_{1}}{2}\right)$
-The first order condition for this problem is given by:

$$
q_{\mathrm{i}}^{\mathrm{a}}=\frac{A}{2}
$$

The SPNE of the Stackeberg game is given by:
$\left(q_{i}^{*}=\frac{A}{2}, q_{i_{2}^{*}}^{*}\left(q_{1}\right)=\frac{A-q_{1}}{2}\right)$
The equilibrium outcome is for firm 1 to choose $A / 2$ and firm 2 to choose $A /$

- The Cournot game was one in which all firms chose quantities simultaneously

The Courrot game was one in which all firms cose qaytities simuttaneously
In that game, since there is only one subgame, SPNE was the same as the set of
NE
-The Cournot game was one in which all firms chose quantities simultaneously

- In that game, since there is only one subgame, SPNE was the same as the set of
NE

Lets solve for the see of fPNE (which is the same as NE) in the Courrot game
with the same denand function and same costs
with the same demand function and same ocosts

The Cournot game was one in which all firms chose quantities simultaneously
In that game, since there is only one subgame, SPNE was the same as the set of

- Lets solve for the set of fPNE (which is the same as NE) in the Cournot game

In this case, (qis. q^{*}) is a NE if and only if
$q_{1}^{*} \in B R_{1}\left(q^{*}\right), q_{2}^{*} \in B R_{2}\left(q_{1}^{*}\right)$

For $q_{i}^{*} \in B R_{1}\left(q_{i}^{*}\right)$, we need q_{i}^{*} to solve the following maximization problem: $\max _{q_{2}=0}\left(A-q_{1}-q_{2}^{2} q_{1}\right.$.

```
\(F F^{2}{ }^{*} \in B R_{1}\left(q^{*}\right)\). we need \(q\) it to solve the following maximization proble
    \(\max _{q=0}\left(A-q_{1}-q_{2}^{*}\right) q\)
- By the Foc, we have
\(q_{1}^{*}=\frac{A-q_{2}^{*}}{2}\)
```

For $q_{i}^{*} \in B R_{1}\left(q^{*}\right)$, we need q_{1}^{*} to solve the following maximization problen
$\max _{\substack{2 \\ 2}}\left(A-q_{1}-q_{2}^{2} q_{1}\right.$

- By the foc, we have:
$q_{i}=\frac{A-q_{i}}{2}$
Similary for $q_{2}^{*} \in B R_{2}\left(q_{i}^{*}\right)$,
$q_{2}^{*}=\frac{A-q_{t}^{*}}{2}$.
- For $q_{i}^{*} \in B R_{1}\left(q^{*}\right)$, we need q_{i}^{q} to solve the following maximization problem
$\max _{q_{1} \geq 0}\left(A-q_{1}-q_{2}^{2} q_{1}\right.$.
- By the FOC, we have
$q_{1}^{*}=\frac{A-q_{2}^{*}}{q_{2}^{*}}$
Similarly for $q_{2}^{*} \in B R_{2}\left(q_{i}^{*}\right)$.
$q_{i}^{*}=\frac{A-q_{1}^{*}}{2}$.
- As a result, solving these two equations, we get:
$q_{i}^{*}=q_{2}^{*}=\frac{A}{3}$.

In the Cournot game, note that firms' payoffs are $\pi_{1}^{i}=\frac{A^{2}}{9}, \pi \frac{A_{2}}{2}=\frac{A^{2}}{9}$.
As we alteady saw, this was not Pareto efficient since each firm is geting a payoff that
is strictly ess than $1 / 2$ of the monopoly profits.

- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} A$
- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} A$
- Thus, the firms' payoffs in the SPNE is:

$$
\pi_{1}^{s}=\frac{1}{4} A \cdot \frac{A}{2}=\frac{A^{2}}{8}, \pi_{2}^{s}=\frac{1}{4} A \cdot \frac{A}{4}=\frac{A^{2}}{16} .
$$

- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} A$
- Thus, the firms' payoffs in the SPNE is:

$$
\pi_{1}^{s}=\frac{1}{4} A \cdot \frac{A}{2}=\frac{A^{2}}{8}, \pi_{2}^{s}=\frac{1}{4} A \cdot \frac{A}{4}=\frac{A^{2}}{16} .
$$

- Firm 1 obtains a better payoff than firm 2
- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} A$
- Thus, the firms' payoffs in the SPNE is:

$$
\pi_{1}^{s}=\frac{1}{4} A \cdot \frac{A}{2}=\frac{A^{2}}{8}, \pi_{2}^{s}=\frac{1}{4} A \cdot \frac{A}{4}=\frac{A^{2}}{16} .
$$

- Firm 1 obtains a better payoff than firm 2
- This is intuitive since firm 1 always has the option of choosing the Cournot
quantity $q_{1}=A / 3$, in which case firm 2 will indeed choose $q_{2}^{*}\left(q_{1}\right)=A / 3$ giving a
payoff of $A^{2} / 9$

