Lecture 16

martes, 21 de abril de 2020 03:03 p.m.

POF

Lecture16

Lecture	16: Applications of Subgame Perfect Nash Equilibrium
	Mauricio Romero
	(日)(日)(日)(日)(日)
cture 16: Appl	المعنى المعن
ecture 16: Appl	
	lications of Subgame Perfect Nash Equilibrium
ecture 16: Appl Ultimatum Ga	lications of Subgame Perfect Nash Equilibrium
	lications of Subgame Perfect Nash Equilibrium ame
Ultimatum Ga	lications of Subgame Perfect Nash Equilibrium ame
Ultimatum Ga	lications of Subgame Perfect Nash Equilibrium ame ffers

Lecture 16: Applications of Subgame Perfect Nash Equilibrium

Ultimatum Game Alternating offers Stackelberg Competition

(日)(月)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	
	$\frac{1}{X} = \int (A)^{2} .$ $\frac{1}{X} = \int (A)^{2} .$
 Player 1 makes a proposal (x, 1000 − x) of how to split 10 pesos among (100, 900),, (800, 200), (900, 100) 	CANTE ADA CANTE ADA E [0,1000] UNA ESTRATEGIA DE JE M (0,0) DINEINITAS ZI (0,00) DINEINITAS ZI (0,00) DINEINITAS ZI (0,00)
2. Player 2 accepts or rejects the proposal	(X,1000-X) (0,0) DINFINITES =77 (000 JOBAR DEPUNCTION
 If player 2 rejects both obtain 0. If 2 accepts, then the payoffs or the two players are determined by (x, 1000 - x) 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$
	$5_{1} = \frac{X=1,000}{1-1}$ $F = -1K = 1.000$ ($S_{2}(X) = 1$ A $X < 1,000$) [$S_{2}(X) = 1$ A $X < 1,000$] [$S_{2}(X) = 1$ A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] A $X < 1,000$] [$S_{2}(X) = 1$] [$S_{2}(X)$

(口)(句)(言)(言) 注 の40

·ロ··(タ)·(2)·2) ま うえで

- Player 1 makes an offer θ_1
- Player 2 accepts or rejects the proposal
- ▶ If player 2 rejects, player 2 makes an offer θ_2
- If player 1 accepts or rejects the proposal

(D) (Ø) (E) (E) E 9900

- ▶ Player 1 makes an offer θ_1
- Player 2 accepts or rejects the proposal
- ▶ If player 2 rejects, player 2 makes an offer θ_2
- If player 1 accepts or rejects the proposal
- \blacktriangleright If player 1 rejects, player 1 makes an offer $heta_3$

10 × 10 × 12 × 12 × 2 000

- ▶ Player 1 makes an offer θ_1
- Player 2 accepts or rejects the proposal
- ▶ If player 2 rejects, player 2 makes an offer θ_2
- If player 1 accepts or rejects the proposal
- \blacktriangleright If player 1 rejects, player 1 makes an offer $heta_3$
- ... and on and on for T periods

10+10+12+12+2+2 040

(ロ)(母)(注)(注) 注 の(で)

Player 1 makes an offer
$$\theta_1$$
 $(\theta_1, 1-\theta_1)$
Player 2 accepts or rejects the proposal
If player 2 rejects, player 2 makes an offer θ_2 $(1-\theta_2, \theta_2)$ $\theta_2(0, 1)$
If player 1 accepts or rejects the proposal
If player 1 rejects, player 1 makes an offer θ_3 $\theta_3(0, 3, 1-\theta_3)$
... and on and on for T periods
If no offer is ever accepted, both payoffs equal zero

The discount factor is $\delta \leq 1$. If Player 1 offer is accepted by Player 2 in round m, $\pi_1 = \delta^m \theta_m$, $\pi_2 = \delta^m (1 - \theta_m)$. If Player 2 offer is accepted, reverse the subscripts

101 (B) (2) (2) (2) (B) (C)

- ▶ In period (*T* − 2), Player 1 would offer Player 2 $\delta(1 \delta)$, keeping $(1 \delta(1 \delta))$ for himself
- \blacktriangleright Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth $\delta(1-\delta)$ today
- ▶ In period (*T* − 3), Player 2 would offer Player 1 $\delta[1 \delta(1 \delta)]$, keeping $(1 \delta[1 \delta(1 \delta)])$ for himself

(D) (0) (2) (2) (2) 2 9900

- In period (*T* − 2), Player 1 would offer Player 2 δ(1 − δ), keeping (1 − δ(1 − δ)) for himself
- \blacktriangleright Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth $\delta(1-\delta)$ today
- ▶ In period (*T* − 3), Player 2 would offer Player 1 $\delta[1 \delta(1 \delta)]$, keeping $(1 \delta[1 \delta(1 \delta)])$ for himself
- Player 1 would accept...

10+10+12+12+ 2 040

- ▶ In period (*T* − 2), Player 1 would offer Player 2 $\delta(1 \delta)$, keeping $(1 \delta(1 \delta))$ for himself
- \blacktriangleright Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth $\delta(1-\delta)$ today
- ▶ In period (*T* − 3), Player 2 would offer Player 1 $\delta[1 \delta(1 \delta)]$, keeping $(1 \delta[1 \delta(1 \delta)])$ for himself
- Player 1 would accept...
- ► ...

(日)(四)(2)(2)(2) そう そうろくの

- ▶ In period (*T* − 2), Player 1 would offer Player 2 $\delta(1 \delta)$, keeping $(1 \delta(1 \delta))$ for himself
- \blacktriangleright Player 2 would accept since he can earn $(1-\delta)$ in the next period, which is worth $\delta(1-\delta)$ today
- ▶ In period (*T* − 3), Player 2 would offer Player 1 $\delta[1 \delta(1 \delta)]$, keeping $(1 \delta[1 \delta(1 \delta)])$ for himself
- Player 1 would accept...
- ► ...
- \blacktriangleright In equilibrium, the very first offer would be accepted, since it is chosen precisely so that the other player can do no better by waiting

1011-101-121-121-2-9900

▶ If T = 3 (i.e, 1 offers, 2 offers, 1 offers)

▶ One offers $\delta(1-\delta)$, 2 accepts in period 1

920 5 (5)(5)(5)(0)

 Player 1 always does a little better v does 	when he makes the offer than when Player 2			
If we consider just the class of perio 1's share falls	ds in which Player 1 makes the offer, Player			
	· □ · · ð · · 2 · · 2 · 3	Q.C.		
Lecture 16: Applications of Subgame Perf		STRS	Descuent	$\frac{1}{2c}$
Ultimatum Game	The state	ADOR	Descuent	
Alternating offers	05 200			
Stackelberg Competition				
	<ロ>、(型)、(芝)、(芝)、(芝)、(芝)、(芝)、(芝)、(芝)、(芝)、(芝)、(芝	20-f		
Lecture 16: Applications of Subgame Perf	ect Nash Equilibrium	8=.	$\left(\frac{1}{++}\right)$	
Stackelberg Competition				
	(日)(月)(2)(2)(2) 夏 の	a (r		
Recall back to the model of Cournor	duopoly, where two firms set quantities			
	<ロ>(ロ>(D)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)	4.0°		

iackeliseize 75-15 1 CONTINGERCY / LOUIZNOT EI FI 1552=100 CONTRACEDED (ONJUNIC) Sz=Ll FNFC 26=2 ŦΖ $[\Pi_{i}(q,q_{2}),\Pi_{2}(q,q_{2})]$ 42 $C_2=G=0$ Ezl $\frac{FZ}{FZ} = \frac{1}{12} (q_1, q_2) = P(q_1 + q_2) = \frac{P(q_1 + q_2)}{q_1 - q_1} = \frac{P(q_1 + q_2)}{q_1 - q_1}$

► There are many Nash equilibria of this game which are a bit counterintuitive

 \mathcal{O}

What is an	example of a Nash	equilibrium o	f this game?

Let $\alpha \in [0, A)$ and consider the following strategy profile: $A = if \ a_1 \neq \alpha$

 $q_1^* = lpha, q_2^*(q_1) = egin{cases} A & ext{if } q_1
eq lpha, \ rac{A-lpha}{2} & ext{if } q_1 = lpha. \end{cases}$

► Let us check that indeed this constitutes a Nash equilibrium

(日)(四)(三)(三)(三)(三)(日)

- Suppose that firm 1 plays the strategy q₁^{*}. Is firm 2 best responding?
- Firm 2's utility function is given by:

 $u_2(q_1^*,q_2(\cdot))=(A-\alpha-q_2(\alpha))q_2(\alpha).$

- ► Thus, firm 2 wants to choose the optimal strategy q₂(·) that maximizes the following utility: max(A − α − q₂(α))q₂(α)
- By the first order condition, we know that

 $q_2(\alpha) = \frac{A-\alpha}{2}.$

- \blacktriangleright The utility function of firm 2 does not depend at all on what it chooses for $q_2^*(q_1)$ when $q_1\neq \alpha$
- ▶ In particular, q_2^* is a best response for firm 2
- ▶ The above observation allows us to conclude that there are many Nash equilibria of this game

10+10+12+12+2+040

(D) (D) (E) (E) E 9900

- The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above

- $\blacktriangleright\,$ The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above
- The Nash equilibria highlighted above all lead to different predictions

10110 \$ 121121 (2)

- $\blacktriangleright\,$ The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above
- ► The Nash equilibria highlighted above all lead to different predictions
- ▶ The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets the price α and firm 2 sets the price $(A \alpha)/2$.

(D) (B) (2) (2) 2 900

- The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above
- The Nash equilibria highlighted above all lead to different predictions
- ▶ The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets the price α and firm 2 sets the price $(A \alpha)/2$.
- \blacktriangleright In particular, in the Nash equilibrium corresponding to $\alpha=$ 0, the equilibrium outcome is for firm 1 to choose a quantity of 0 and firm 2 setting a price of A/2

- ▶ The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above
- ► The Nash equilibria highlighted above all lead to different predictions
- ► The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets the price α and firm 2 sets the price $(A \alpha)/2$.
- \blacktriangleright In particular, in the Nash equilibrium corresponding to α = 0, the equilibrium outcome is for firm 1 to choose a quantity of 0 and firm 2 setting a price of A/2
- ► This would be the same outcome if firm 2 were the monopolist in this market

 $(\Box) + (\Box) + (\Xi) + (\Xi) + (\Xi) + (\Box) +$

- ► This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- ► The reason is that essentially firm 2 is playing a strategy that involves non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all

900 5 (5)(5)(0)(0)

- ▶ Consider the equilibrium in which $\alpha = 0$
- This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- The reason is that essentially firm 2 is playing a strategy that involves non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all
- ► As a result, the best that firm 1 can do is to produce nothing

10, (B) (2) (2) (2) (2)

- \blacktriangleright Consider the equilibrium in which $\alpha = 0$
- ► This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- ► The reason is that essentially firm 2 is playing a strategy that involves non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all
- ► As a result, the best that firm 1 can do is to produce nothing
- ▶ If firm 1 were to hypothetically choose $q_1 > 0$, then firm 2 would obtain negative profits if it indeed follows through with $q_2^*(q_1)$.

(ロ) (四) (水) (水) (日)

Many Nash equilibria are counterintuitive in the Stackelberg game

 $(\Box) + (\underline{\partial}) + (\Xi) + (\Xi) + (\Xi) + (\Box) + ($

- Many Nash equilibria are counterintuitive in the Stackelberg game
- To eliminate such counterintuitive equilibria, we focus instead on SPNE instead of NE

(D) (B) (2) (2) (2) (2) (0)

- Many Nash equilibria are counterintuitive in the Stackelberg game
- To eliminate such counterintuitive equilibria, we focus instead on SPNE instead of NE
- \blacktriangleright Lets continue with the setting in which marginal costs are zero and the demand function is given by $A-q_1-q_2$

1011 (B) (2) (2) 2 900

(ロ) (日) (三) (三) (三) (三) (日)

Then player 1'	's utility function given that player 2 plays q_2^* is given by:
$u_1(q_1$	$(q_1,q_2^*(\cdot)) = q_1(A - q_1 - q_2^*(q_1)) = \begin{cases} q_1(A - q_1) & \text{if } q_1 > A, \\ q_1 rac{A - q_1}{2} & \text{if } q_1 \le A. \end{cases}$
	· □ · · ⑦ · · 注 · · 注
► Then player 1'	's utility function given that player 2 plays q_2^{st} is given by:
	$f(1) = (A - q_1) \text{if } q_1 > A,$
$u_1(q_1$	$(q_2^*(\cdot)) = q_1(A - q_1 - q_2^*(q_1)) = egin{cases} q_1(A - q_1) & ext{if } q_1 > A, \ q_1 rac{A - q_1}{2} & ext{if } q_1 \leq A. \end{cases}$
Thus, firm 1 m	naximizes $\max_{q_1} u_1(q_1,q_2^*(\cdot))$
	(D) (Ø) (E) (E)
	's utility function given that player 2 plays q_2^* is given by:
$u_1(q_1$	$(q_1,q_2^*(\cdot)) = q_1(A-q_1-q_2^*(q_1)) = \begin{cases} q_1(A-q_1) & ext{if } q_1 > A, \ q_1 rac{A-q_1}{2} & ext{if } q_1 \leq A. \end{cases}$
	$\left(q_1 \frac{\cdots q_k}{2}\right)$ if $q_1 \leq A$.
Thus. firm 1 m	naximizes max $_{q_1}u_1(q_1,q_2^*(\cdot))$
Firm 1 will nev	ver choose $q_1 > A$ since then it obtains negative profits
	(D), (<u>D</u>), (2), (2)
Then player 1's	's utility function given that player 2 plays q_2^st is given by:
$u_1(q_1$	$(q_2^*(\cdot)) = q_1(A - q_1 - q_2^*(q_1)) = egin{cases} q_1(A - q_1) & ext{if } q_1 > A, \ q_1 rac{A - q_1}{2} & ext{if } q_1 \leq A. \end{cases}$
· · · ·	naximizes max $_{q_1}u_1(q_1,q_2^*(\cdot))$
Thus, firm 1 m	
	ver choose $a_1 > A$ since then it obtains negative profits
► Firm 1 will nev	ver choose $q_1 > A$ since then it obtains negative profits

- ► The Cournot game was one in which all firms chose quantities simultaneously
- \blacktriangleright In that game, since there is only one subgame, SPNE was the same as the set of NE

(D) (B) (E) (E) E 940

- ► The Cournot game was one in which all firms chose quantities simultaneously
- \blacktriangleright In that game, since there is only one subgame, SPNE was the same as the set of NE
- Lets solve for the set of SPNE (which is the same as NE) in the Cournot game with the same demand function and same costs

・ロン・タン・ボン・ボン・ ほうろうで

- ► The Cournot game was one in which all firms chose quantities simultaneously
- In that game, since there is only one subgame, SPNE was the same as the set of NE
- Lets solve for the set of SPNE (which is the same as NE) in the Cournot game with the same demand function and same costs
- ▶ In this case, (q_1^*,q_2^*) is a NE if and only if

 $q_1^*\in BR_1(q_2^*), q_2^*\in BR_2(q_1^*).$

(ロ・(口)・(ロ)・(マ)・(マ)・(ロ)

101100 \$ 151151 (\$ 1000

▶ For $q_1^* \in BR_1(q_2^*)$, we need q_1^* to solve the following maximization problem:

 $\max_{q_1 \ge 0} (A - q_1 - q_2^*) q_1.$

(D) (B) (2) (2) 2 940

(D) (B) (2) (2) (2) 2 900

- ▶ In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4}A$
- Thus, the firms' payoffs in the SPNE is:

$$\pi_1^s = \frac{1}{4}A \cdot \frac{A}{2} = \frac{A^2}{8}, \pi_2^s = \frac{1}{4}A \cdot \frac{A}{4} = \frac{A^2}{16}.$$

- Firm 1 obtains a better payoff than firm 2
- ▶ This is intuitive since firm 1 always has the option of choosing the Cournot quantity $q_1 = A/3$, in which case firm 2 will indeed choose $q_2^*(q_1) = A/3$ giving a payoff of $A^2/9$
- \blacktriangleright But by choosing something optimal, firm 1 will be able to do even better

(日) (日) (水) (水) (日)