

Lecture 19: <u>Infinitely</u> Repeated Games Mauricio Romero
Lecture 19: <u>Infinitely</u> Repeated Games Mauricio Romero
Lecture 19: <u>Infinitely</u> Repeated Games Mauricio Romero
Lecture 19: <u>Infinitely</u> Repeated Games Mauricio Romero
Mauricio Romero
Mauricio Romero
101101121121121 2 JQ
1011001121121 2 99(
(D+(@+(2),2) \$ 93(
(ロ・(の) (注) (注) (注) (注) (注)
〈ロ〉(思)(思)(思) 見 のの(

	<i>c</i>					
Introduction to Infinitely Repeated	Games					
			1211	20	2	000

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games	
	(ロ) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

One of the features of finitely repeated games was that if the stage game had a unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium				
	 One of the features of finitely unique Nash equilibrium, then repetition of that unique stage 	repeated games was that the only subgame perfe game Nash equilibrium	at if the stage game ct Nash equilibrium	had a was the

- Lets first define what an infinitely repeated game is
- \blacktriangleright We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n

101 (B) (2) (2) (2) 2 000

- Lets first define what an infinitely repeated game is
- ▶ We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n
- Each player i has an action set A_i

- Lets first define what an infinitely repeated game is
- \blacktriangleright We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n
- Each player i has an action set A_i
- ▶ In each period t = 0, 1, 2, ..., players simultaneously choose an action $a_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players

101 (B) (3) (3) (3) (3)

- Lets first define what an infinitely repeated game is
- ▶ We start with a stage game whose utilities are given by $\underbrace{u_1, u_2, \ldots, u_n}_{\bullet}$
- Each player i has an action set <u>A</u>_i
- ▶ In each period t = 0, 1, 2, ..., players simultaneously choose an action $a_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players
- \blacktriangleright Then play moves to period t+1 and the game continues in the same manner.

(日)(日)(日)(日)(日))

It is impossible to draw the extensive form of this infinitely repeated game

· D · · (D · · 2 · · 3 · 2 · 010

- It is impossible to draw the extensive form of this infinitely repeated game
- Each information set of each player i associated with a finitely repeated game corresponded to a history of action profiles chosen in the past

101 (B) (2) (2) 2 990

f٦

For example, if the stage game is the prisoner's dilemma, at period 1, there are 4 possible histories:

 $\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$

- For time t, H^t consists of 4^t possible histories
- This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree

(D) (B) (2) (3) 2 000

For example, if the stage game is the prisoner's dilemma, at period 1, there are 4 possible histories:

 $\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$

- For time t, H^t consists of $\underline{4}^t$ possible histories
- This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree
- \blacktriangleright As a result, we can think of each $h^t \in H^t$ as representing a particular information set for each player i in each time t

くりつう 聞 へ思トへ思トへのト

(D)((B)(2)(2)(2) 2 990

(日)(間)(注)(注)(注) 著 の(()

What is a strategy in an infinitely repeated game? \blacktriangleright It is simply a prescription of what player i would do at every information set or history Therefore, it is a function that describes: $s_i: \bigcup_{t\geq 0} H^t o A_i.$ What is a strategy in an infinitely repeated game? It is simply a prescription of what player i would do at every information set or history describes: $s_i: \bigcup_{t\geq 0} (H^t) \rightarrow A_i$. $A_{1\leq 10} t UA = Sveloo.$ Therefore, it is a function that describes: ▶ Intuitively, s_i describes exactly what player i would do at every possible history h^t , where $s_i(h^t)$ describes what player i would do at history h^t 10+10+12+12+12+1040 ▶ For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history ► For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history ► There can be more complicated strategies such as the following: $s_i(h^t) = egin{cases} C_i & ext{if } t = 0 ext{ or } h^t = (C, C, \dots, C), \ D_i & ext{otherwise.} \end{cases}$ (ロ)((の))(2)(2)(2) 2 の(() -75,-77ESENCADENANIC For example in the infinitely repeated prisoner's dilemma, the strategy $s_i(h^t) = C_i$ for all h^t and all t is the strategy in which player i always plays C_i regardless of the history 1 C C2 2 C1 C2 There can be more complicated strategies such as the following: $s_i(h^t) = \begin{cases} \underline{C_i} & \text{if } t = 0 \text{ or } h^t = (C, C, \dots, C), \\ \underline{D_i} & \text{otherwise.} \end{cases}$ 3 CICZ SI И 102 The above is called a grim trigger strategy 01

- What about in the grim trigger strategy profile?
- ▶ In that case, if all players play the grim trigger strategy profile, the sequence of actions that arise is again (*C*, *C*, ...)
- ► Thus the payoffs of all players is again ¹/_{1-δ}.

(ロト・(部)・(水)・(市)・ 油・ うへつ・

What is a subgame perfect Nash equilibrium in an infinitely repeated game?

(D) (B) (2) (2) 2 900

- What is a subgame perfect Nash equilibrium in an infinitely repeated game?
- It is exactly the same idea as in the finitely repeated game or more generally extensive form games

- What is a subgame perfect Nash equilibrium in an infinitely repeated game?
- It is exactly the same idea as in the finitely repeated game or more generally extensive form games
- That is a strategy profile s = (s₁,..., s_n) is a subgame perfect game Nash equilibrium if and only if s is a Nash equilibrium in every subgame of the repeated game.

Theorem (One-stage deviation principle) \bigotimes is a subgame perfect Nash equilibrium (SPNE) if and only if at every time t, and every history and every player i, player i cannot profit by deviating just at time t and following the strategy s'_i from time t + 1 on

(D) (B) (2) (2) (2) 2 900

101-100-121-121-2 OQC

▶ Under this strategy profile s_1^*, s_2^* , for all histories h^t , $V_1(s_1^*, s_2^* \mid h^t) = V_2(s_1^*, s_2^* \mid h^t) = 0.$ (日)(日)(日)(日)(日)(日) Under this strategy profile s₁^{*}, s₂^{*}, for all histories h^t, $V_1(s_1^*,s_2^*\mid h^t)=V_2(s_1^*,s_2^*\mid h^t)=0.$ Thus, for all histories h^t, $\underbrace{u_i(D_i, D_{-i})}_0 + \delta \underbrace{V_i(s_1^*, s_2^* \mid h^t)}_0 > \underbrace{u_i(C_i, D_{-i})}_{-1} + \delta \underbrace{V_i(s_1^*, s_2^* \mid h^t)}_0$ 10+10+15+15+18+10+0 ▶ Under this strategy profile s_1^*, s_2^* , for all histories h^t , $V_1(s_1^*, s_2^* \mid h^t) = V_2(s_1^*, s_2^* \mid h^t) = 0.$ Thus, for all histories h^t, $\underbrace{u_i(D_i, D_{-i})}_0 + \delta \underbrace{V_i(s_1^*, s_2^* \mid h^t)}_0 > \underbrace{u_i(C_i, D_{-i})}_{-1} + \delta \underbrace{V_i(s_1^*, s_2^* \mid h^t)}_0$ ▶ Thus, (s₁^{*}, s₂^{*}) is a SPNE (D) (B) (2) (2) 2 9900 In fact this is not specific to the prisoner's dilemma as we show below: Theorem Let a^{*} be a Nash equilibrium of the stage game. Then the strategy profile <u>s</u>^{*} in which all players i play a^{*}_i at all information sets is a SPNE for any $\delta \in [0, 1)$. (日)(四)(2)(2)(2) ほうのの What other kinds of SPNE are there?

101-100-121-121-2 OQC

CASO 1. A NUE The ≥ (GGC,, ► Consider for example the grim trigger strategy profile that we discussed earlier Each player plays the following strategy V(No Desurating)= VE-1 + U(D1, D2) + U(D1, D2) & + if $h^t = (C, C, \ldots, C)$ $s_i^*(h^t)$ if $h^t \neq (C, C, \ldots, C)$ \blacktriangleright We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE ▶ The equilibrium path of play for this SPNE is for players to play C in every period $) + U(G_1, D_2) + SU(D_1, D_2) + S^2U(D_1, D_2)$ ESVIATORE) = VE-L ► How do we show that the above is indeed an SPNE? PASALDY. $\frac{\mathcal{D}(D_1, D_2)}{1-1} = \frac{\mathcal{D}}{1-S} = \mathcal{D}$ Ve(100 De6V)= $V_{\varepsilon}(D_{\varepsilon SV}) = V(C_{\varepsilon}, D_{\varepsilon}) + SV(D_{\varepsilon}, D_{$ $= V(C_1D_2) + SV(D_1D_2) \Gamma + S^2 + S^3 + - - 7$ How do we show that the above is indeed an SPNE? We use the one-stage deviation principle again (1)z j o C (\sim) \geq ► How do we show that the above is indeed an SPNE? We use the one-stage deviation principle again \blacktriangleright We need to check the one-stage deviation principle at every history h^t . DESV Ŵh Fredict Case 1: ▶ Suppose first that $h^t \neq (C, C, ..., C)$ ANI . 1

No DESVIO ANTES $= V_1(C_1, C_2) + S U_2(C_1, C_2) + S U_1(C_1, C_2) +$ Case 1: Suppose first that $h^t \neq (C, C, \dots, C)$ Players are each suppose to play D_i 27 Case 1: Suppose first that $h^t \neq (C, C, \dots, C)$ Players are each suppose to play D_i Thus, we need to check that De $u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$ $\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^t, (C_i, D_{-i})))$ $\left(\right)_{l} \left(D_{l} \right)_{l}$ Di, $D_{2})[1+8+8]$ Case 1: $(\mathbf{P}_{c}, \mathbf{I})$ Suppose first that $h^t \neq (C, C, \dots, C)$ (), (Players are each suppose to play D_i 2 Thus, we need to check that \mathbf{r} $u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$ $\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^t, (C_i, D_{-i})))$ ▶ But since $h^t \neq (C, C, ..., C)$, $V_i(s^* | (h^t, D)) = V_i(s^* | (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$. ------Case 1: Suppose first that $h^t \neq (C, C, \dots, C)$ Players are each suppose to play D_i Thus, we need to check that $u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$ $\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^t, (C_i, D_{-i})))$ ▶ But since $h^t \neq (C, C, ..., C)$, $V_i(s^* | (h^t, D)) = V_i(s^* | (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$. So the above inequality is satisfied if and only if $u_i(D_i, D_{-i}) \ge u_i(C_i, D_{-i}).$ Ŷ D + (@ + (2 + (2 + 2 - 0)) Case 1: Suppose first that $h^t \neq (C, C, \dots, C)$ Players are each suppose to play D_i Thus, we need to check that $(|(N_n) > |) | Desv$ $u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$ $\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^t, (C_i, D_{-i})))$ ▶ But since $h^t \neq (C, C, ..., C)$, $V_i(s^* | (h^t, D)) = V_i(s^* | (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$. So the above inequality is satisfied if and only if

 $\geq u_i(\mathsf{C}_i, D_{-i}) + \delta V_i(\mathbf{s}^* \mid (\mathbf{h}^*, (\mathsf{C}_i, D_{-i})))$

- ▶ But since $h^t \neq (C, C, ..., C)$, $V_i(s^* | (h^t, D)) = V_i(s^* | (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$.
- So the above inequality is satisfied if and only if
 - $u_i(D_i, D_{-i}) \ge u_i(C_i, D_{-i}).$
- But this is satisfied since D is a Nash equilibrium of the stage game ----

Case 2:

Case 2:

• Suppose instead that $h^t = (C, C, \dots, C)$ Players are both supposed to play C_i

Case 2:

- Suppose instead that h^t = (C, C, ..., C)
- Players are both supposed to play C_i
- Thus, we need to check that

990 5 (5) (5) (6) (0)

Case 2:

- Suppose instead that h^t = (C, C, ..., C)
- Players are both supposed to play C_i
- Thus, we need to check that
 - $u_i(C_i, C_{-i}) + \delta V_i(s^* \mid (h^t, C))$
 - $\geq u_i(D_i, C_{-i}) + \delta V_i(s^* \mid (h^t, (D_i, C_{-i}))).$

In this case,

 $V_i(s^* | (h^t, C)) = u_i(C_i, C_{-i})$ $= 1, V_i(s^* | (h^t, (D_i, C_{-i}))) = u_i(D) = 0.$

> N (DESV)

S (IAN

7

