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» One of the features of finitely repeated games was that if the stage game had a
unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the
repetition of that unique stage game Nash equilibrium
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This happened because there was a last period from which we could induct
backwards (and there was a domino effect!)

» When the game is instead i ly repeated, this argument no longer applies
since there is no such thing as a last period
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In each period t =0,1,2,..., players simultaneously choose an action a; € A; and
the chosen action profile (ay, a, .. .. ap) is observed by all players
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Then play moves to period t + 1 and the game continues in the same manner.

» |t is impossible to draw the extensive form of this infinitely repeated game
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» Each information set of each player i associated with a finitely repeated game
corresponded to a history of action profiles chosen in the past
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» Each information set of each player i associated with a finitely repeated game
corresponded to a history of action profiles chosen in the past

» We can represent each information set of player i by a history:

Prisoner’s Dilemma
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» For example, if the stage game is the prisoner’s dilemma, at pericdgglhere are 4

possible histories:
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» For example, if the stage game is the prisoner’s dilemma, at period 1, there are 4
possible histories:

{(G1, G), (C1, D), (D1, Go), (D1, D)} = H.

> For time t,/H* consists oossible histories
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For time t, H! consists ofA: possible histories
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This means that there is a one-to-one mapping between all possible histories and

the information sets if we actually wrote out the whole extensive form game tree
—_—
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As a result, we can think of each h* € H® as representing a particular information
set for each player i in each time t

» What is a strategy in an infinitely repeated game?

> What is a strategy in an infinitely repeated game?

» It is simply a prescription of what player / would do at every information set or
history
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What is a strategy in an infinitely repeated game?
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It is simply a prescription of what player / would di very information set or

Distogn,
Therefore, it is a function that describes: (
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Intuitively, s; describes exactly what player i would do at every possible history hf,
where s;(h') describes what player i would do at history ht

v
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For example in the infinitely repeated prisoner's dilemma, the strategy s;(h') = ;
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» For example in the infinitely repeated prisoner’s dilemma, the strategy sj(h*) = C;
for all A* and all ¢t is the strategy in which player i always plays C; regardless of
the history

» There can be more complicated strategies such as the following:

() G ift=0o0rht=(C,C,..., C),
e =
! D;  otherwise.

G, P W& SN M/ T

» For example in the infinitely repeated prisoner's dilemma, the strategy s;(h*) = G;
for all h* and all t is the strategy in which player i always plays C; regardless of
the history

D, herwi:
D, otherwise.

» The above is called a grim trigger strategy
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Then the payoff of player /i in this repeated game is given by:
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» How are payoffs determined in the repeated game?

» Suppose the strategies sy, ..., s, are played which lead to the infinite sequence of
action profiles:

» Then the payoff of player i in thig repeated game is given by:

» Intuitively, the contribution to payoff of time t action profile a* is discounted by ¢
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» However the discount factor instead could be interpreted by the probability of the
game/relationship ending at any point in time.
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It may be unreasonable to think about an infinitely repeated game

v

However the discount factor instead could be interpreted by the probability of the
game/relationship ending at any point in time.

v

Thus, an infinitely repeated game does not necessarily represent a scenario in
which there are an infinite number of periods, but rather a relationship which ends
in finite time with probability one, but in which the time at which the relationship
ends is uncertain

v

Lets see some examples of how to compute payoffs in the repeated game

> Lets see some examples of how to compute payoffs in the repeated game

» Consider first the strategy profile in which s;(h*) = C; for all i = 1,2 and all h*.
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P Lets see some examples of how to compute payoffs in the repeated game
» Consider first the strategy profile in which s;(h*) = C; for all i = 1,2 and all ht.
» In this case, the payoff of player 1 in this repeated game is given by:
t=0
» In that case, if all players play the grim trigger strategy profile, the sequence of
actions that arise is again (C,C,...)
> Lets see some examples of how to compute payoffs in the repeated game
> Consider first the strategy profile in which s;(h*) = C; for all i = 1,2 and all A*.
» In this case, the payoff of player 1 in this repeated game is given by:
t=0
» What about in the grim trigger strategy profile?
» In that case, if all players play the grim trigger strategy profile, the sequence of
actions that arise is again (C, C,...)
» Thus the payoffs of all players is again 1—15
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How about a more complicated strategy profile?
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How about a more complicated strategy profile?

Suppose that s;(h®) = (C1, D) and the strategy profile says to do exactly what < \ _ - %
the opponent did in the previous period C; 6/
Then if both players play these strategies, then the sequence of actions that arise
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How about a more complicated strategy profile?

Suppose that s;(h%) = (Ci, D) and the strategy profile says to do exactly what Z [/]
the opponent did in the previous period \ Z K % + ‘ﬁ_ ‘{‘ -
-\ —7
Then if both players play these strategies, then the sequence of actions that arise ~ ], Z/
is;
(C1,Dy), (D1, &), (C1, Dy), . .. (/

Then the payoff to player 1 in this game is given by:
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» What is a subgame perfect Nash equilibrium in an infinitely repeated game?

» What is a subgame perfect Nash equilibrium in an infinitely repeated game?

» It is exactly the same idea as in the finitely repeated game or more generally
extensive form games

» What is a subgame perfect Nash equilibrium in an infinitely repeated game?

» |t is exactly the same idea as in the finitely repeated game or more generally
extensive form games

» That is a strategy profile s = (s,...,s,) is a subgame perfect game Nash
equilibrium if and only if s is a Nash equilibrium in every subgame of the repeated
game.

Theorem (One-stage deviation principle)

@is a subgame perfect Nash equilibrium (SPNE) if and only if at every time t, and
every history and every player i, player i cannot profit by deviating just at time t and
following the strategy s. from time t + 1 on



» This is extremely useful since we only need to check that s; is optimal against all
possible one-stage deviations rather than having to check that it is optimal
against all s/.

» This is extremely useful since we only need to check that s; is optimal against all
possible one-stage deviations rather than having to check that it is optimal
against all s/.

» We will now put this into practice to analyze subgame perfect Nash equilibria of
infinitely repeated games
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Lets go back to the infinitely repeated prisoner’s dilemma

What is an example of a subgame perfect Nash equilibrium?

One kind of equilibrium should be straightforward: each player plays D; and Ds
always at all information sets

v
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Why is this a SPNE?

» We_can use the one-stage deviation principle

Prisoner's Dilemma
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> Under this strategy profile s}, s, for all histories A",

Vi(si,s3 | h) = Va(si, &5 | h*) = 0.

> Under this strategy profile s}, s, for all histories A,

Vi(si,s3 | hf) = Va(si, 55 | ') =0.

» Thus, for all histories ht,

ui(Dr, D_i) +6 Vi(s{, 55 | h') > ui(Ci, D_i) +0 Vi(si, s5 | h')
—_— —— Y— %U,_/
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> Under this strategy profile s}, s, for all histories A,

Va(si,s3 | hf) = Va(si, 3 | ') =0.

» Thus, for all histories ht,

ui(Di, D_i) +6 Vi(si, 53 | h*) > ui(Ci, D_j) +0 Vi(st, s5 | h')
0 0 -1 0

» Thus, (s},s3) is a SPNE

In fact this is not specific to the prisoner’s dilemma as we show below:

Theorem

Let a* be a Nash equilibrium of the stage game. Then the strategy profile s*_jn which
all players i play a} at all information sets is af SPNE for any § € [0,1).

» What other kinds of SPNE are there?



» What other kinds of SPNE are there?

» In finitely repeated games, this was the only SPNE with prisoner's dilemma since
the stage game had a unique Nash equilibrium

» What other kinds of SPNE are there?

» In finitely repeated games, this was the only SPNE with prisoner’s dilemma since
the stage game had a unique Nash equilibrium

» When the repeated game is infinitely repeated, this is no longer true
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» Consider for example the grim trigger strategy profile that we discussed earlier.
Each player plays the following strategy:
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» Consider for example the grim trigger strategy profile that we discussed earlier.
Each player plays the following strategy:

D iR £(C,C,....C).

Si,(h,):{c, if it =(C.C....,C)

» We will show that if § is sufficiently high, so that the players are sufficiently
patient, the strategy profile of grim trigger strategies is indeed a SPNE
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» Consider for example the grim trigger strategy profile that we discussed earlier.
Each player plays the following stra
e
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» We will show that if d is sufficiently high, so that the players are sufficiently

) =
patient, the strategy profile of grim trigger strategies is indeed a SPNE D ‘l>
«
e [h/g

» The equilibrium path of play for this SPNE is for players to play C in every period
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Suppose first that h* # (C, C,...,C)
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Suppose first that ht # (C, C,..., C) gk %’ g
Players are each suppose to play D;
Thus, we need to check that ( E
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Suppose first that h* # (C,C, ..., C)

Players are each suppose to play D;

Thus, we need to check that < ——
ui(Dj, D) + 8Vi(s™ | (", D))
> ui( G, D) +6Vi(s™ | (h*,(Ci, D))

But since ht # (C,C,...,C),
Vi(s* | (b, D)) = Vi(s* | (h*, (G, D)) = ui(D;, D). &
So the above inequality is satisfied if and only if
R —
ui(Di, D_;) > ui(Gi. D_;). u
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» Suppose first that ht # (C,C,...,C)

» Players are each suppose to play D;
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Thus, we need to check that

ui(Di, D_;) +8Vi(s* | (h*, D))

> ui(Gi, D) + 8Vi(s* | (h*,(Ci, D-3))) \/
But since At # (C, C,..., C), R M / > \ ( “/>
Vi(s* | (h*, D)) = Vi(s* | (h*,(C;, D-i))) = ui( Dy, D—y).
n this ahrws inaauaiit s csticfied i and anly if /) /‘/,f\ \ Ve '

Players are each suppose to play D; \/ —— Z‘
Thus, we need to check that -‘?/
ui(Di, D_i) +8Vi(s" | (", D)) : -
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» But since h* # (C,C,...,C),
Vi(s* | (b, D)) = Vi(s™ | (h*,(Ci, D)) = ui(Di, D).

» So the above inequality is satisfied if and only if

ui(D;, D_;) > ui( G, D_j).

» But this is satisfied since D is a Nash equilibrium of the stage game

Case 2:
» Suppose instead that h* = (C, C,...,C)
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» Players are both supposed to play C;

Case 2:
» Suppose instead that h* = (C, C,...,C)
» Players are both supposed to play C;
» Thus, we need to check that

ui( G, C) + 6Vi(s™ | (K°, C))
> ui(Di, Ci) + 8Vi(s™ | (B, (D, C-1)))-

Case 2:
» Suppose instead that h* = (C, C,..., C)
» Players are both supposed to play C;
» Thus, we need to check that
ui(Gi, Ci) +8Vi(s™ | (', C))
> ui(Dy, Coi) + 6Vi(s*™ | (b (Dr, C-1))).

» In this case,

Vi(s* | (b, C)) = ui(Ci, C-))
=1L, V(5" | (A, (D), C_1))) = w(D) 0.
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Case 2:
» Suppose instead that h* = (C, C,...,C)
» Players are both supposed to play C;
» Thus, we need to check that

(G, Ci) +8Vi(s™ | (h, C))

> u(Dy, €3) + 8Vi(s™ | (A, (D1, C))).
» In this case,

Vi(s" | (h', ©)) = ui( G, C)

=1,Vi(s" | (h",(Di, C-))) = ui(D) = 0.
» Therefore, the above is satisfied if and only if

14622« 4§>1/2.

Case 2:
» Suppose instead that h* = (C, C,...,C)
» Players are both supposed to play C;
» Thus, we need to check that
ui(Gi, Ci) +8Vi(s™ | (', C))
> ui(Dj, Coi) + 0Vi(s* | (h*,(Dj, C-i)))-

» In this case,

Vi(s* | (b, ©)) — ui(Gi, C)

=1, Vi(s" | (H, (D, C_1))) = u(D) =0,
» Therefore, the above is satisfied if and only if

1+6>2«=46>1/2.

P[Thus the grim trigger strategy profile s* is a SPNE if and only if § > 1/2. j

» The above findings that SPNE may involve the repetition of action profile that is
not a stage game NE is not specific to just the infinitely repeated prisoner's
dilemma as the following theorem demonstrates

Theorem (Folk theorem)

Suppose that{g” is a Nash equilibrium of the stage gamel Suppose thats an action
profile of the Nash equilibrium such that
:

u1(38) > v1(a"), ..., up(d) > un(a*).

Then there is some
the equilibrium patl





