믄
,

Lecture 19: Infinitely Repeated Games
Mauricio Romero

Lecture 19: Infinitely Repeated Games

Introduction to nffinitey Repeated Games

Lecture 19: Infinitely Repeated Games

Introduction to Iffinity Repeeated Games

This hapenened because there was. last period foom which we could induc
backurwds (and there was a dominio effecti)
 unicue Nash equilibrium, then the only subsgme perfeed
repetition of that uniue stage game Nash equibrium

This happened becaus ethere was a last petiod foom which we could induct
backurars (and there was a domino effecti)
When the game is is istead iefinitely repeated. this argument no olonger applies
since there is os os suct thing sas alast perfod

Lets fist define what an infinitely repeated game is

Lets fis the what an in repated game
We start with a stage game whose utitities are given by $u_{1}, u_{2}, \ldots, u^{u}$

Lets firs define what an infinitey repeated game is
We start with a slage game whose utwies are give by $u_{1}, u_{2}, \ldots, u^{2}$
Each player i has an an action set $A_{\text {t }}$

- Each player i has an action set A_{i}

In each period $t=0,1,2$, , players simultaneousy choose an action $a_{i} \in A_{i}$ and
the chosen action profilie $\left(a_{1}\right.$, ,2 $\left.2, \ldots, a_{n}\right)$ is obsereved by all players

Leis fist define wat an infinitey repeated game is

- We start with a stage game whose utitities are given by $\xlongequal{u_{1}, u_{2}, \ldots, u_{n}}$
- Each player i has an a action set \underline{A}_{-}

Then play moves to period $t+1$ and the game continues in the same manner.

It is impossible to draw the extensive form of this infinitely repeated game

It is impossible to draw the extersive form of this infinitely repeated game

- Each information set of each plyyer i associated witha a fintely repeated game
coressononded to a history of action profies chosen in in the past

$$
h^{0}=(()), h^{1}=\left(a^{0}:=\left(a_{1}^{0}, \ldots, a_{n}^{o}\right)\right), \ldots, h^{t}=\left(a^{0}, a^{1}, \ldots, a^{t-1}\right)
$$

- It is inposisile to draw the extensive form of this in innitely repeated game

-We can segeresent teach information set of player iby a histor:

- We denote the set of all histories at timet as μ^{+t}
- For example, if the stage game is the p pisoner's diemma, at period (X) (there are 4

For erample if the stage game is the pisonere's diemma, at period 1, there are 4
$\left\{\left\{C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}$

For example, if the stage game is the prisoner's diemma, at period 1 , there are 4
possible histories: $\left\{\left(G_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}$

- For time t, H^{t} consists of 4^{4} possible histories
- This mens that there isa one-to-one mapping betwen all posible histories and

For exampleis if the stage game is the p pisoner's diemma, at eriod 11 , there are 4
possible intories:
$\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}$.
For time t, $\mathrm{H}^{\text {c }}$ consists of 4^{4} posisible histories

or each player i in each time

- What is s strategy in an infinitely repeated game?
- What is a strategy in an infinitely repeated game?

Itis simply a prescripition of what player i would do at every information set or
history
-What is a stateges in an infinitely reeneated game?

- It is simply a prescripioion of what payer i would do at every information set or

Therefore, it is fanction that describes:
si: $\bigcup_{t>0} H^{t} \rightarrow A$

What is s strategy in an infinitely repeated game?
His simply a prescription of what player i would do at everey information set or

\rightarrow Intuitively, s d. describes exactly what player i would do at every possible history h^{t}.

$s\left(h^{t}\right)= \begin{cases}c_{i} & \text { if } t=0 \text { or } h^{t}=(c, c, \ldots, c) \\ D_{i} & \text { otherwise }\end{cases}$

- How are pavoffs determined in the repeated game?

Suppose fhe strategies s, \ldots, \ldots, s_{n} are played which ead to the in infinte sequenced
action profiles
$\Omega^{0}, a^{1}, \ldots, a^{t}, a^{r+1}$,

Suppose the strategies s_{1}, \ldots, s_{n} are played which lead to to in infinite sequence of $\Omega^{0}, a^{1}, \ldots, a^{2}, a^{a+1}$

Then the payoff of player iin this repeated game is given by: $\sum_{t=0}^{\infty} f^{\delta^{t} u\left(a^{\prime}\right)}$.

How are payoffis determined in the ereeated gamed
Suppose the strategies s_{1}, \ldots, s_{n} are played which lead to to ine infinite sequence of
action profies
$r_{s^{0}, a^{1}, \ldots, a^{t}, a^{t+1}, \ldots . .}$
Then the payoff of player in this repeated game is given

- It may be unresosonable to think about an inf initely repeated game

Howeere the discount factor instead could be interpereted by the roobability of t He
game/erelationstintip ending at anyy pointin tin time.
This an infritely yepeated game does not necessanty represent a scenario in which there are an infinite uumber of periods but rather a relationstio which ends
in finite time with probability one, but in ends is uncerain

- Lets see some examples of how to compute payffs in the repaeted game

\rightarrow Lets see some examples of how to compute payfff in the reeneted
- Consider first the strategy profilie in which $s\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all

In this case, the payoff of p payer 1 in this repeated game is siven by

- Lets see some examples of how to compute payofff in the repeated game
- Considef fist the strategy profilie in which $s\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all .
- In this case, the payof of player 1 in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t^{t}}=\frac{1}{1-\delta}
$$

Tut

Lets see some examples of how to compute payoffs in the repeeted game

- Consider first the strategy Porfie in which $s\left(h^{h}\right)=c_{i}$ for all $i=1,2$ and all h

Whtis case the eparff of p payer 1in this reepated game is given by $\sum_{t=0}^{\infty} \delta^{t^{t}}=\frac{1}{1-\delta}$

Wat about int te egin inger strategy poome

Thus the payoffs of all players is again $\frac{1}{1-}$

- How about a more complicated strategy profile?

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games
Subgame Perfect Nash Equilibrium

What is s subgame perfect Nash equilibrium in an inffinitedy repeated gamel
It is exactly the same idea as in the finitely repeated game or more generally extensivie form games

- What is s subgame eerfect Nash equilibrium in an infinitely repeetec game?
- It is exacty the same idea as in the fintely repeated game or more generally
extensive form games

[^0]


```
    M
We vill now vut this intopractice to nalyze subgame perfect Nash equilibria
```

Lecture 19: Infinitely Repeated Games
Itroduction to Iffinityy Repeated Games
Examples

- Lets go back to to the infinitey repeated pisisoner's diemma

	C_{2}	D_{2}
C_{1}	1,1	$-1,2$
D_{1}	1	1

Lets go back to the infinitedy repeeted prisoner's dilemma

- What is an example of a subgame perfect Nash equilibrium?
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
\Rightarrow One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2}
always at all information sets
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2}
always at all information sets
- Why is this a SPNE?

Under this strateegy profies $s_{1}^{\prime} s_{2}$, for al histories $V_{1}\left(s_{1}^{t}, s_{1}^{s} \mid h^{t}\right)=v_{2}\left(s_{1}^{s}, s_{2}^{s} \mid h^{t}\right)=0$

-Thus for all histories t^{t}

Under this strategy profie s s_{1}^{5}, s_{s}, for all histories h^{t}. $v_{1}\left(s_{s}^{s}, s_{2} \mid h^{t}\right)=v_{2}\left(s_{1}, s_{2}^{t} \mid h^{t}\right)=0$.

Thus, 0 ar

Thus, (sis, s, is) is SPNE

In ract this is not specificto the prisoners diemma as we show velow-

- What other kinds of SPNE are there?
- In finitely repeated games. this was the only SPME with prisoner's dilemma sine
- What other Kinds of SPNE are there?

When the repeated game is is infinitely repeated, this is no oo longer true

- Consider for example the gin trigger strategy profile that we discussed earlier
$s^{t}\left(h^{t}\right)= \begin{cases}c_{i} & \text { if } h^{t}=(c, c, \ldots, c) \\ 0\end{cases}$

CASO 1" ${ }^{\text {n }}$

$$
\begin{aligned}
& V_{e}\left(D_{0} D_{D_{00}} \|\right)=\frac{U\left(D_{1}, D_{2}\right)}{1-\delta}=\frac{0}{1-\delta}=0 \\
& V_{E}\left(D_{\text {ess }}\right)=U\left(C_{1}, D_{C}\right)+\delta U\left(D_{1} D_{2}\right)+\delta^{2} U\left(D_{1}, D_{2}\right)+\ldots \\
& =U\left(G_{1} D_{2}\right)+\delta U\left(D_{1}, D_{2}\right)\left[1+\delta^{2}+\delta^{3}+\cdots\right] \\
& =\underbrace{\left.U\left(G_{1}\right)_{2}\right)}+\underbrace{\delta U\left(D_{1}, D_{2}\right)}_{l-\delta} \\
& =(-1)+\frac{\delta 00}{1-\delta}=-1
\end{aligned}
$$

Peffictor no Dosi

$$
\overline{\overline{h_{\theta}=(c, c},} / \bar{c}, \ldots, b
$$

\qquad

$$
\begin{aligned}
& \text { CASO no desulo Ántes } \\
& \text { WG } \left.N_{0} D_{\text {EsV }}\right)=V_{1}\left(C_{1} C_{2}\right)+\delta V_{1}\left(C_{1}(2)+\delta^{2} U_{1}\left(C_{1} C_{2}\right)+\cdots\right. \\
& =\frac{U_{1}\left(C_{1}, C_{2}\right)}{1-\delta}=\frac{1}{1-\delta} \\
& V(0)\left(D_{\operatorname{cs}} V\right)=U_{1}\left(D_{1}, C_{2}\right)+\delta U_{1}\left(D_{1}, D_{2}\right)+\delta^{2} U_{1}\left(D_{1}, D_{2}\right)+ \\
& =U_{1}\left(D_{1}, C_{2}\right)+\delta_{1}\left(D_{1}, D_{\varepsilon}\right)\left[1+\delta+\delta^{2}+\cdots\right] \\
& =U_{1}\left(D_{1}(\Sigma)+\frac{\delta U_{1}\left(D_{1}, D_{2}\right)}{1-\delta}\right. \\
& =2+\frac{8 \cdot 0}{1-8}=2 \\
& \left(\| N_{m} D_{\text {nosu }}\right) \geq U\left(\operatorname{Des}^{2}\right)
\end{aligned}
$$

$\geq u_{i}\left(L_{i}, \nu_{-i}\right)+o v_{i}\left(s^{*} \mid\left(n^{*},\left(L_{i}, \nu_{-i}\right)\right)\right)$
$\begin{aligned} & \text { But since } h^{t} \neq(C, C, \ldots, C), \\ & V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right) .\end{aligned}$

- So the above inequality is satisfied if and only if
$u_{i}\left(D_{i}, D_{-i}\right) \geq u_{i}\left(C_{i}, D_{-i}\right)$.
- But this is satisfied since D is a Nash equilibrium of the stage game

Case 2:
2: Suppose instead that $h^{t}=(C, C, \ldots, C)$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}
- Thus, we need to check that
- Thus, we need to check that

$$
u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)
$$

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right) .
\end{aligned}
$$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$

Players are both supposed to play C_{i}

- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& >u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t} .\right.\right.
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)=u_{i}\left(C_{i}, C_{-i}\right) \\
& =1, V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0 .
\end{aligned}
$$

$$
U\left(N_{0} D \operatorname{Des}\right) \geqslant U(D \operatorname{EsV})
$$

Case

- Suppose intead that $h^{h}=(C, C, \ldots$,
- Payers are both supposed to

- In this case,
$V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)=u_{i}\left(C_{i}, C_{i}\right)$
$\left.=1, V_{i}\left(s^{\prime}\right)\left(h^{2},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0$.
-Therefore, the above is satisifed if and only if
$1+\delta \geq 2 \Leftrightarrow \delta \geq 1 / 2$

Case 2:

- Suposes intead that $h^{t}=(C, C, \ldots$,
- Payers are both supposed to pla
$\left.\xrightarrow{u_{i}\left(C_{i}, C_{i}\right)+\delta V_{i}\left(s^{*}\right)\left(h^{*},()\right)} \geq \geq u_{i}\left(D_{i}, C_{i-i}\right)+\delta V_{i}\left(s^{*}\right)\left(h^{\prime},\left(D_{i}, C_{-i}\right)\right)\right)$.
In this case,
$V_{i}\left(s^{*} \mid\left(h^{t}, C\right)=u_{i}\left(C_{i}, C_{-i}\right)\right.$
$\left.=1, V_{i}\left(s^{\prime}\right)\left(h^{\prime},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0$
Therefore, the above is satisifed if and only if
- Thus the grim trigere strategy profile s^{*} is a SPNE if and only if $\delta \geq 1 / 2$.

$\quad T=\infty$

[^0]: Theorem (One-stage devition pinitiple)
 (Sis subgame perfect Nash equilibrium (SPNE) If fand only if tat every time t, and everl history and every payer i, iplayeri can
 following the strategy 5 t foom time $t+1$ on

