Lecture 8: Price Discrimination

Mauricio Romero

Lecture 8：Price Discrimination

Introduction

First Degree Price Discrimination

Two－part tariff

Two－part tariff vs 1st degree price discrimination

Lecture 8: Price Discrimination

Introduction

```
First Degree Price Discrimination
```

Two-part tariff

Two-part tariff vs 1st degree price discrimination

- In real life, firms often have different prices for different consumers/units
- We will explore some of these now
- In a competitive market such exotic pricing schemes could never arise since $p=$ marginal cost

Lecture 8：Price Discrimination

Introduction

First Degree Price Discrimination

Two－part tariff

Two－part tariff vs 1st degree price discrimination

Lecture 8: Price Discrimination

Introduction

First Degree Price Discrimination

Two-part tariff

Two-part tariff vs 1st degree price discrimination

- Suppose the firm can observe all characteristics of the consumer
- What should the firm do?
- Suppose the firm can observe all characteristics of the consumer
- What should the firm do?
- Demand curve illustrates the willingness to pay for the q-th unit of the product
- Suppose the firm can observe all characteristics of the consumer
- What should the firm do?
- Demand curve illustrates the willingness to pay for the q-th unit of the product
- Firm can extract all of the surplus of the consumer. How?
- Firm will price at $p(q)$ for the q-th unit and continue to produce until $p(q)=M C(q)$
- Firm will price at $p(q)$ for the q-th unit and continue to produce until $p(q)=M C(q)$
- Firm gets all of the consumer surplus as his profits:

$$
\Pi=\int_{0}^{q^{*}}\left(p(q)-c^{\prime}(q)\right) d q=\int_{0}^{q^{*}} p(q) d q-c\left(q^{*}\right)
$$

where q^{*} is the quantity at which $p\left(q^{*}\right)=c^{\prime}\left(q^{*}\right)$.
(a) Monopolist with Single Price

(b) Monopolist with Perfect Price Discrimination

- Firm can do this is because it knows the exact demand curve of each consumer
- Such activity is prohibited in many countries
- Firm can do this is because it knows the exact demand curve of each consumer
- Such activity is prohibited in many countries
- Amazon tries to estimate everyone's demand curve

Lecture 8：Price Discrimination

Introduction

First Degree Price Discrimination

Two－part tariff

Two－part tariff vs 1st degree price discrimination

Lecture 8: Price Discrimination

```
Introduction
First Degree Price Discrimination
```

Two-part tariff

Two-part tariff vs 1st degree price discrimination

- Suppose that a bar has a monopoly in a community
- Each drink costs c dollars to provide
- Consumers have diminishing marginal returns on the alcohol consumed

This bar would produce q at price $p(q)$ such that

$$
p^{\prime}(q) q+p(q)=c
$$

if it were only able to charge one price

- Many bars have a cover charge (an entry fee)
- Does this increase profits?
- Two quantities $\left(f, q^{*}\right)$ where f is the entry fee and q is the drinks sold
- Two quantities $\left(f, q^{*}\right)$ where f is the entry fee and q is the drinks sold
- How much are consumers willing to pay to enter the bar when there are q^{*} units of drinks being served:

$$
\int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q .
$$

- Two quantities $\left(f, q^{*}\right)$ where f is the entry fee and q is the drinks sold
- How much are consumers willing to pay to enter the bar when there are q^{*} units of drinks being served:

$$
\int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q
$$

- As long as

$$
f \leq \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q
$$

then all consumers will come to the bar

- Two quantities $\left(f, q^{*}\right)$ where f is the entry fee and q is the drinks sold
- How much are consumers willing to pay to enter the bar when there are q^{*} units of drinks being served:

$$
\int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q
$$

- As long as

$$
f \leq \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q
$$

then all consumers will come to the bar

- For a fix q^{*}, the monopolist will always charge an entry fee of

$$
f=\int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q
$$

- What is then the profit maximizing price and quantity given this entry fee?
- What is then the profit maximizing price and quantity given this entry fee?

$$
\max _{q^{*}} \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q+p\left(q^{*}\right) q^{*}-c q^{*}=\max _{q^{*}} \int_{0}^{q^{*}}(p(q)-c) d q
$$

- What is then the profit maximizing price and quantity given this entry fee?

$$
\max _{q^{*}} \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q+p\left(q^{*}\right) q^{*}-c q^{*}=\max _{q^{*}} \int_{0}^{q^{*}}(p(q)-c) d q
$$

- The first order condition is:

$$
p(q)-c=0
$$

- What is then the profit maximizing price and quantity given this entry fee?

$$
\max _{q^{*}} \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q+p\left(q^{*}\right) q^{*}-c q^{*}=\max _{q^{*}} \int_{0}^{q^{*}}(p(q)-c) d q .
$$

- The first order condition is:

$$
p(q)-c=0
$$

- Then

$$
p\left(q^{*}\right)=c .
$$

then all consumers will come to the bar

- What is then the profit maximizing price and quantity given this entry fee?

$$
\max _{q^{*}} \int_{0}^{q^{*}}\left(p(q)-p\left(q^{*}\right)\right) d q+p\left(q^{*}\right) q^{*}-c q^{*}=\max _{q^{*}} \int_{0}^{q^{*}}(p(q)-c) d q .
$$

- The first order condition is:

$$
p(q)-c=0
$$

- Then

$$
p\left(q^{*}\right)=c .
$$

then all consumers will come to the bar

- The entry fee is:

$$
\int_{0}^{p^{-1}(c)}(p(q)-c) d q
$$

- Quantity produced is efficient
- Consumer surplus is 0

Lecture 8：Price Discrimination

Introduction

First Degree Price Discrimination

Two－part tariff

Two－part tariff vs 1st degree price discrimination

Lecture 8: Price Discrimination

```
Introduction
First Degree Price Discrimination
Two-part tariff
```

Two-part tariff vs 1st degree price discrimination

- Under both first price discrimination and two-part tariff, the firm is able to extract all of the consumer surplus
- What is the difference between first degree price discrimination and two-part tariff?
- Let's see with an example

$$
\begin{aligned}
& p_{A}=2-\frac{1}{4} q_{A} \\
& p_{B}=8-q_{B}
\end{aligned}
$$

Marginal cost of production of 1

- If the monopolist knew the demand curve of each consumer
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- Two-part tariff
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- Two-part tariff
- Different fee and different price for each consumer
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- Two-part tariff
- Different fee and different price for each consumer
- Price of 1 to all consumers
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- Two-part tariff
- Different fee and different price for each consumer
- Price of 1 to all consumers
- Entry fee of 2 for consumer A (consumer surplus when $p=1$)
- If the monopolist knew the demand curve of each consumer
- First degree price discrimination
- Different price for each consumer and each unit, and extract all consumer surplus
- Two-part tariff
- Different fee and different price for each consumer
- Price of 1 to all consumers
- Entry fee of 2 for consumer A (consumer surplus when $p=1$)
- Entry fee of $49 / 2=24.5$ for consumer B (consumer surplus when $p=1$)

What if monopolist doesn't know who is who

- What if monopolist doesn't know who is who
- First degree price discrimination
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
& p_{A}=2-\frac{1}{4} q_{A} \\
& p_{B}=8-q_{B}
\end{aligned}
$$

- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$

$$
Q=q_{A}+q_{b}=16-5 p
$$

- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$

$$
\begin{gathered}
Q=q_{A}+q_{b}=16-5 p \\
P=\frac{16-Q}{5}
\end{gathered}
$$

- if $p>2$
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$

$$
\begin{gathered}
Q=q_{A}+q_{b}=16-5 p \\
P=\frac{16-Q}{5}
\end{gathered}
$$

- if $p>2$
- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$

$$
\begin{gathered}
Q=q_{A}+q_{b}=16-5 p \\
P=\frac{16-Q}{5}
\end{gathered}
$$

- if $p>2$

$$
Q=q_{A}+q_{b}=8-p
$$

- What if monopolist doesn't know who is who
- First degree price discrimination
- Aggregate demand

$$
\begin{aligned}
p_{A} & =2-\frac{1}{4} q_{A} \\
p_{B} & =8-q_{B} \\
q_{A} & =8-4 p_{a} \\
q_{B} & =8-p_{B}
\end{aligned}
$$

- if $p \leq 2$

$$
\begin{gathered}
Q=q_{A}+q_{b}=16-5 p \\
P=\frac{16-Q}{5}
\end{gathered}
$$

- if $p>2$

$$
\begin{gathered}
Q=q_{A}+q_{b}=8-p \\
P=8-Q
\end{gathered}
$$

$$
\begin{aligned}
& Q(p)=\left\{\begin{array}{l}
16-5 p \text { if } p \leq 2 \\
8-p \text { if } p \geq 2
\end{array}\right. \\
& P(Q)=\left\{\begin{array}{l}
\frac{16-Q}{5} \text { if } Q \geq 6 \\
8-Q \text { if } Q \leq 6
\end{array}\right.
\end{aligned}
$$

- We are unsure where the monopoly will maximize
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- If $Q \leq 6$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- If $Q \leq 6$
- FOC: $8-Q-Q=1$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- If $Q \leq 6$
- FOC: $8-Q-Q=1$
- $Q=3.5$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- If $Q \leq 6$
- FOC: $8-Q-Q=1$
- $Q=3.5$
- $P=5.5$
- We are unsure where the monopoly will maximize
- $\max \pi=q p(q)-q$
- FOC: $p(q)+q p^{\prime}(q)-1=0$
- If $Q \geq 6$
- FOC: $\frac{16-Q}{5}-\frac{Q}{5}=1$
- $Q=\frac{11}{5}=2.2$
- Cannot be a solution
- If $Q \leq 6$
- FOC: $8-Q-Q=1$
- $Q=3.5$
- $P=5.5$
- Is the solution
- What if monopolist doesn't know who is who
- What if monopolist doesn't know who is who
- Two-part tariff
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- Tariff ≥ 2, but ≤ 24.5
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- Tariff ≥ 2, but ≤ 24.5
- Only B enters the bar. Tariff=24.5 and profit equal to 24.5
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- Tariff ≥ 2, but ≤ 24.5
- Only B enters the bar. Tariff=24.5 and profit equal to 24.5
- Tariff ≥ 24.5
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- Tariff ≥ 2, but ≤ 24.5
- Only B enters the bar. Tariff=24.5 and profit equal to 24.5
- Tariff ≥ 24.5
- No one enters the bar
- What if monopolist doesn't know who is who
- Two-part tariff
- Price equal to 1
- Tariff ≤ 2
- Everyone enters the bar. Tariff=2 and profit equal to 4
- Tariff ≥ 2, but ≤ 24.5
- Only B enters the bar. Tariff=24.5 and profit equal to 24.5
- Tariff ≥ 24.5
- No one enters the bar
- Zero profit

