Lecture 9: Price Discrimination

Mauricio Romero

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

- Market is segmented (no re-selling across markets)
- Firm knows the characteristics of each market (demand curve)
- Consider the following example: Two kinds of consumers:

$$
\begin{aligned}
q_{A}\left(p_{A}\right) & =24-p_{A} \\
q_{B}\left(p_{B}\right) & =24-2 p_{B}
\end{aligned}
$$

- constant marginal cost of production of 6

If the firm were allowed to set different prices in the different markets, then he would choose:

$$
\begin{aligned}
\max _{p_{A}}\left(24-p_{A}\right)\left(p_{A}-6\right) & \Longrightarrow p_{A}^{*}=15 \\
\max _{p_{B}}\left(24-2 p_{B}\right)\left(p_{B}-6\right) & \Longrightarrow p_{B}^{*}=9 .
\end{aligned}
$$

Total consumer surplus (CS) and profits of the firm in each market:

$$
\pi_{A}^{*}=81, \pi_{B}^{*}=18, C S_{A}=40.5, C S_{B}=9 .
$$

Firm chose to set the same price in each market. Then he would maximize the following:

$$
\begin{aligned}
\max \left\{\max _{p \geq 12}(24-p)(p-6), \max _{p<12}(24-p)(p-6)+\right. & (24-2 p)(p-6)\} \\
= & \max \{81,75\}=81
\end{aligned}
$$

- Price of $p^{*}=15$ in both markets, which leads to only consumers in market A buying
- To summarize, the consumer surplus and profits in each market are:

$$
\pi_{A}^{*}=81, \pi_{B}^{*}=0, C S_{A}=40.5, C S_{B}=0
$$

- Prohibiting third degree price discrimination can exclude a whole market altogether
- Highly inefficient compared to the social welfare outcome given third degree price discrimination
- Suppose that the constant marginal cost of production is now 4 instead of 6
- With third degree price discrimination, the firm sets the following prices:

$$
\begin{aligned}
\max _{p_{A}}\left(24-p_{A}\right)\left(p_{A}-4\right) & \Longrightarrow p_{A}^{*}=14, \\
\max _{p_{B}}\left(24-2 p_{B}\right)\left(p_{B}-4\right) & \Longrightarrow p_{B}^{*}=8
\end{aligned}
$$

- In this case, the profits and consumer surplus in each market is given by:

$$
\pi_{A}^{*}=100, \pi_{B}^{*}=32, C S_{A}=50, C S_{B}=16, T S=198
$$

- If the firm were prohibited from using third degree price discrimination, then:

$$
\begin{array}{r}
\max \left\{\max _{p \geq 12}(24-p)(p-4), \max _{p<12}(48-3 p)(p-4)\right\} \\
=\max \{100,108\}=108
\end{array}
$$

- $p=10$
- profits in both markets and the consumer surplus in both markets:

$$
\pi_{A}^{*}=84, \pi_{B}^{*}=24, C S_{A}=98, C S_{B}=4, T S=210
$$

- Consumers in region B are hurt but consumers in region A gain significantly leading to an increase in consumer surplus
- The firm's joint profits are hurt but the total surplus actually increases
- Total surplus decreases
- Third degree price discrimination is considered illegal in many countries and the European union
- It is possible to get around such allegations by claiming that the differential pricing comes from cost reasons

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

- When someone or some firm is the sole buyer (monopoly is the sole seller)
- Often arises in the context of firms being the sole buyers of labor
- Let us study the profit maximization problem of a firm:

$$
\max _{K, L} p f(K, L)-r K-w(L) L .
$$

- w is now a function of the amount of labor demanded (reflecting the power of the firm in the labor market)
- The first order condition yields:

$$
p \frac{\partial f}{\partial L}\left(K^{*}, L^{*}\right)=w^{\prime}\left(L^{*}\right) L^{*}+w\left(L^{*}\right) \Longrightarrow p M P L=L^{*} w^{\prime}+w .
$$

- In a competitive market $w^{\prime}=0$ and so $p M P L=w$
- Wages and labor below the competitive level (an argument for minimum wages and union)

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

Lecture 9: Price Discrimination

Third Degree Price Discrimination
Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

- What happens when there are multiple monopolies involved in the market?
- What happens when there are multiple monopolies involved in the market?
- Firm A produces factor a at no cost
- What happens when there are multiple monopolies involved in the market?
- Firm A produces factor a at no cost
- Firm b in order to supply q_{b} units of b must buy q_{a} units of a
- What happens when there are multiple monopolies involved in the market?
- Firm A produces factor a at no cost
- Firm b in order to supply q_{b} units of b must buy q_{a} units of a
- What happens when there are multiple monopolies involved in the market?
- Firm A produces factor a at no cost
- Firm b in order to supply q_{b} units of b must buy q_{a} units of a
- Firm B produces according to a cost function:

$$
C\left(q_{b}\right)=\left(p_{a}+c\right) q_{b}
$$

- What happens when there are multiple monopolies involved in the market?
- Firm A produces factor a at no cost
- Firm b in order to supply q_{b} units of b must buy q_{a} units of a
- Firm B produces according to a cost function:

$$
C\left(q_{b}\right)=\left(p_{a}+c\right) q_{b}
$$

- Demand equation for good b is linear:

$$
q_{b}\left(p_{b}\right)=100-p_{b} .
$$

- Firm B's optimization problem becomes:

$$
\max _{q_{b}}\left(100-q_{b}\right) q_{b}-p_{a} q_{b}-c q_{b} .
$$

- Firm B's optimization problem becomes:

$$
\max _{q_{b}}\left(100-q_{b}\right) q_{b}-p_{a} q_{b}-c q_{b} .
$$

- The first order condition tells us:

$$
100-2 q_{b}=p_{a}+c \Longrightarrow p_{a}=100-2 q_{b}-c
$$

- Firm B's optimization problem becomes:

$$
\max _{q_{b}}\left(100-q_{b}\right) q_{b}-p_{a} q_{b}-c q_{b}
$$

- The first order condition tells us:

$$
100-2 q_{b}=p_{a}+c \Longrightarrow p_{a}=100-2 q_{b}-c
$$

- Since firm b is the only demander of commodity a, we have:

$$
p_{a}=100-2 q_{b}-c=100-2 q_{a}-c .
$$

- If the price is p_{a} then the q_{a} that solves the above equation would be the amount demanded of good a
- If the price is p_{a} then the q_{a} that solves the above equation would be the amount demanded of good a
- Thus firm B's maximization problem has given us an inverse demand function for commodity a
- Since firm A is also a monopolist in producing good a, we can solve firm A 's maximization problem in the following way:

$$
\max _{q_{a}} q_{a}\left(100-2 q_{a}-c\right) .
$$

- Since firm A is also a monopolist in producing good a, we can solve firm A^{\prime} 's maximization problem in the following way:

$$
\max _{q_{a}} q_{a}\left(100-2 q_{a}-c\right) .
$$

- As a result, we get:

$$
100-4 q_{a}-c=0 \Rightarrow q_{a}^{*}=\frac{100-c}{4}, p_{a}^{*}=50-\frac{c}{2} .
$$

- Since firm A is also a monopolist in producing good a, we can solve firm A 's maximization problem in the following way:

$$
\max _{q_{a}} q_{a}\left(100-2 q_{a}-c\right) .
$$

- As a result, we get:

$$
100-4 q_{a}-c=0 \Rightarrow q_{a}^{*}=\frac{100-c}{4}, p_{a}^{*}=50-\frac{c}{2} .
$$

- Firm a decides to supply the above units of a at a price $50-c / 2$
- Firm B will produce $q_{b}^{*}=q_{a}^{*}=\frac{100-c}{4}$
- Firm B will produce $q_{b}^{*}=q_{a}^{*}=\frac{100-c}{4}$
- Then the price is given by:

$$
p_{b}^{*}=100-\frac{100-c}{4}=75+\frac{c}{4}
$$

- Firm B will produce $q_{b}^{*}=q_{a}^{*}=\frac{100-c}{4}$
- Then the price is given by:

$$
p_{b}^{*}=100-\frac{100-c}{4}=75+\frac{c}{4}
$$

- To summarize, we have:

$$
\begin{align*}
& p_{a}^{*}=50-\frac{c}{2} \tag{1}\\
& q_{a}^{*}=\frac{100-c}{4} \tag{2}\\
& p_{b}^{*}=75+\frac{c}{4} \tag{3}\\
& q_{b}^{*}=\frac{100-c}{4} \tag{4}
\end{align*}
$$

- Case 1: $c=0$

$$
p_{a}^{*}=50, q_{a}^{*}=25, p_{b}^{*}=75, q_{b}^{*}=25 .
$$

- If the firms were to merge so that whatever is produced by one of the firms can be used freely by that firm?
- The monopolists problem becomes:

$$
\max _{q} q(100-q) .
$$

- The first order condition states that:

$$
100-2 q^{*}=0 \Longrightarrow q^{*}=50, p^{*}=50 .
$$

- Price of good b comes down from 75 to 50
- Production of good b goes up from 25 to 50
- This increases both the profits of the firm and the consumer surplus!
- Case 1: $c=10$

$$
p_{a}^{*}=45, q_{a}^{*}=22.5, p_{b}^{*}=77.5, q_{b}^{*}=22.5 .
$$

- If the firms were to merge so that whatever is produced by one of the firms can be used freely by that firm?
- The monopolists problem becomes:

$$
\max _{q} q(100-q)-10 q
$$

- The first order condition states that:

$$
100-2 q=10 \Longrightarrow p^{*}=55, q^{*}=45
$$

- This increases both the profits of the firm and the consumer surplus!
- What is going on in the above examples?
- because the first firm is a monopolist, it charges a mark up above marginal cost for its intermediate good
- This then distorts the marginal cost of firm B up additionally
- This then leads an even larger mark up on top of this additional marginal cost that affects the price of good b
- Essentially a markup on product a indirectly leads to an even larger markup on the final product b
- This is called the double marginalization problem

Lecture 9: Price Discrimination

Third Degree Price Discrimination

Monopsony

Double Marginalization Problem

Profit Sharing and Double Marginalization

Lecture 9: Price Discrimination

Third Degree Price Discrimination
Monopsony
Double Marginalization Problem

Profit Sharing and Double Marginalization

- Double marginalization can lead to inefficiently high prices and inefficiently low levels of production
- By merging, both profits of the firm and consumer surplus may simultaneously go up
- Difficult to tell if two firms are merging to solve a double marginalization problem or if they are simply merging to create a monopoly
- What are some potential ways to solve this problem without mergers?
- One possible way might be to engage in profit sharing
- Firms agree to share profits according to the following rule
- Prices charged for good a are zero
- In exchange, the profits of firm B are shared via a split of α going to firm A and $(1-\alpha)$ going to firm B
- Firms agree to share profits according to the following rule
- Prices charged for good a are zero
- In exchange, the profits of firm B are shared via a split of α going to firm A and $(1-\alpha)$ going to firm B
- Firm A's decision is trivial. He simply produces $q_{a}=q_{b}$
- Firm B chooses to maximize:

$$
\max _{q}(1-\alpha)((100-q) q-c q)=(1-\alpha)\left(\max _{q}(100-q) q-c q\right)
$$

- Term inside the parentheses is just the monopoly profits if the two firms merged:

$$
(1-\alpha) \max _{q} \Pi^{m}(q)
$$

- The firms will produce at the monopoly quantities which we were found were strictly greater than if the two firms produced completely separately without any such agreement
- The firms will produce at the monopoly quantities which we were found were strictly greater than if the two firms produced completely separately without any such agreement
- The price will be the monopoly price
- The firms will produce at the monopoly quantities which we were found were strictly greater than if the two firms produced completely separately without any such agreement
- The price will be the monopoly price
- For any $\alpha \in(0,1)$, we get an increase in consumer surplus and total profits
- The firms will produce at the monopoly quantities which we were found were strictly greater than if the two firms produced completely separately without any such agreement
- The price will be the monopoly price
- For any $\alpha \in(0,1)$, we get an increase in consumer surplus and total profits
- Really, for any α ?
- The firms will produce at the monopoly quantities which we were found were strictly greater than if the two firms produced completely separately without any such agreement
- The price will be the monopoly price
- For any $\alpha \in(0,1)$, we get an increase in consumer surplus and total profits
- Really, for any α ?
- Such arrangements can break down easily. Profits are hard to verify.
- Profits are usually difficult to verify. However, revenues are much easier to check.
- Profits are usually difficult to verify. However, revenues are much easier to check.
- Firms enter into an arrangement where the revenues are shared according to α (firm A) and ($1-\alpha$) (firm B) split
- Profits are usually difficult to verify. However, revenues are much easier to check.
- Firms enter into an arrangement where the revenues are shared according to α (firm A) and ($1-\alpha$) (firm B) split
- Suppose that $\alpha=1 / 2$ and $c=10$. Then firm 2 maximizes:

$$
\max _{q} \frac{1}{2} q(100-q)-10 q
$$

- Profits are usually difficult to verify. However, revenues are much easier to check.
- Firms enter into an arrangement where the revenues are shared according to α (firm A) and ($1-\alpha$) (firm B) split
- Suppose that $\alpha=1 / 2$ and $c=10$. Then firm 2 maximizes:

$$
\max _{q} \frac{1}{2} q(100-q)-10 q
$$

- The first order condition gives:

$$
\frac{1}{2} M R(q)=M C=10 \Longrightarrow M R(q)=2 M C=20
$$

- Profits are usually difficult to verify. However, revenues are much easier to check.
- Firms enter into an arrangement where the revenues are shared according to α (firm A) and ($1-\alpha$) (firm B) split
- Suppose that $\alpha=1 / 2$ and $c=10$. Then firm 2 maximizes:

$$
\max _{q} \frac{1}{2} q(100-q)-10 q
$$

- The first order condition gives:

$$
\frac{1}{2} M R(q)=M C=10 \Longrightarrow M R(q)=2 M C=20
$$

- Firm will produce below monopoly profits since it will produce at a point where $M R=2 M C$ instead of $M R=M C$
- Solving, we get:

$$
100-2 q=20 \Longrightarrow p^{*}=60>p^{m}=55, q^{*}=40<q^{m}=45
$$

- Solving, we get:

$$
100-2 q=20 \Longrightarrow p^{*}=60>p^{m}=55, q^{*}=40<q^{m}=45
$$

- This does solve the double marginalization problem slightly:

$$
p_{b}^{*}=77.5>p^{*}=60, q_{b}^{*}=22.5<q^{*}=40 .
$$

