Lecture 12
martes, 16 de maro de $2021 \quad 05.33$ p. m.

周

Lecture 12: Game Theory // Nash equilibrium
Mauricio Romero

Lecture 12: Game Theory // Nash equilibrium
Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium
Dominance

\qquad

Beauty contest

- Consider the following game among 100 people. Each individual selects a number,
si. . between 20 and 60 .

Beauty contest

- Each individual maximizes his utility, FOC
$-2\left(s_{i}-\frac{3}{2} a-i\right)=0 \rightarrow 2=\frac{3}{2} a-i$
- Individuals would prefer to select a number that is exactly equal to 1.5 times the average of the others

Definition and there is at least one opponent strategy profile $s_{-}^{\prime \prime} \in S_{-i}$ for which $u_{i}\left(s_{i}, s_{-i}^{\prime \prime} \boldsymbol{D}^{u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime \prime}\right)}\right.$
- Given the assumptions we have, we can note liminate a weakly dominated strategy
Given the assumptions we have, we can not eliminate a weakly dominated strategy Rationality is not enough
- Given the assumptions we have, we can not eliminate a weakly dominated strategy - Rationality is not enough - Even so, it sounds "logical" to do so and has the potential to greatly simplify a game
- Given the assumptions we have, we can not eliminate a weakly dominated strategy - Rationality is not enough - Even so, it sounds "logical" to do so and has the potential to greatly simplify a game - There is a problem, and that is that the order in which we eliminate the strategies matters
a b A 3,4 4,3 B 5,3 3,5 C 5,3 4,3 - If we eliminate B (C dominates weakly), then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result (C, a).
a b A 3,4 4,3 B 5,3 3,5 C 5,3 4,3
- If we eliminate B (C dominates weakly), then a weakly dominates b and we can eliminate b and therefore player 1 would never play A. This leads to the result (C, a). If on the other hand, we notice that A is also weakly dominated by C then we can eliminate it in the first round, and this would eliminate a in the second round and therefore B would be eliminated. This would result in (C, b).


```
Ren \(\mathrm{MHR}\left(\mathrm{S}_{-i}\right)\)
    We denote \(B R_{i}\) (s-i) (best response) as the set of strategies of individual \(i\) that
    maximize her utility given that other individuals follow the strategy profile \(s_{-} ;\).
    Formally,
```

Best response
We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that maximize her utility given that other individuals follow the strategy profile s_{-i}.
Formally.
Definitio
Definition
Given a strategy profile of opponents s_{-i}, we can define the best response of player
$B R_{i}\left(s_{i}\right)=\arg \underset{s_{i} \in \mathcal{S}_{-}}{\max _{-}\left(s_{j}^{\prime}, s_{-i}\right)}$.

- $s_{i} \in B R_{i}\left(s_{-i}\right)$ if and only if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i-j}\right)$ for all $s_{i}^{\prime} \in S$

Best response
We denote $B R_{i}\left(s_{-i}\right)$ (best response) as the set of strategies of individual i that
Formally,
Definition
Definition
Given a strategy profile of opponents s_{-i}, we can define the best response of player i : $B R_{i}\left(s_{-i}\right)=\arg \max _{s_{i} \in S_{i}} u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$.

- $s_{i} \in B R_{i}\left(s_{-i}\right)$ if and only if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in s_{i}$
- There could be multiple strategies in $B R_{i}\left(s_{-i}\right)$ but all such strategies give the
same utility to player i if the opponents are indeed playing according to s_{-i}

Nash equilibrium

Nash equilibrium
Definition
Suppose that we have a game $\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a
strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every i,
$s^{*} \in B R i\left(s^{*}\right)$
$s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate

Nash equilibrium
Definition
Suppose that we have a game $\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a
strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every i,
$s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there

Nash equilibrium
Definition
Suppose that we have a game $\left(I=\{1,2, \ldots, n\}, S_{1}, \ldots, S_{n}, u_{1}, \ldots, u_{n}\right)$. Then a
strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure strategy Nash equilibrium if for every i,
$s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right)$.

- Analogous to that of a competitive equilibrium in the sense that nobody has unilateral incentives to deviate
- once this equilibrium is reached, nobody has incentives to move from there
- This is a concept of stability, but there is no way to ensure, or predict, that the game will reach this equilibrium

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equithortion
Some examples
Relationship to dominante

- Consider the following game among 2 people. Each individual selects a number,
s_{i}, between 20 and 60 . s_{i}, between 20 and 60 .

Beauty contest

- Consider the following game among 2 people. Each individual selects a number.
s_{i}, between 20 and 60 .
- Let s_{-i} be the number selected by the other individual.

Beauty contest

$$
\begin{aligned}
2 & =-2\left(s_{1}-\frac{3}{2} x_{2}\right)=0 \\
& \Rightarrow s_{1}^{*}=\frac{3}{2} s_{2} \Rightarrow M R_{1}\left(s_{2}\right)=\left\{\begin{array}{lll}
\frac{3}{2} s_{2} & s_{1} & s_{2} \leq 40 \\
60 & \text { si } & s_{2} \geqslant 90
\end{array}\right.
\end{aligned}
$$

Beauty contest

$$
\rightarrow \operatorname{MR}\left(s_{2}\right) \quad M R_{2}\left(s_{1}\right)= \begin{cases}\frac{3}{2} s_{1} & \text { si } s_{1} \leq 40 \\ 60 & \text { si } s_{1} \geqslant 40\end{cases}
$$

The best response of an individual is given by

$$
s_{i}\left(s_{-i}\right)^{*}= \begin{cases}\frac{3}{2} s_{-i} & \text { if } s_{-i} \leq 40 \\ 60 & \text { if } s_{-j}>40\end{cases}
$$

The Nash equilibrium is where both BR functions intersect (ie., when both play 60)

$$
V_{1}(20,20)>V_{1}(60,60)
$$

$$
M \mathbb{R}_{1}(20)=30
$$

Prisoner's dilemma

$$
\begin{aligned}
& U_{1}\left(s_{1}, s_{2}\right)=100-\left(s_{1}-\frac{3}{2} s_{2}\right)^{2} \\
& U_{2}\left(s_{1} s_{2}\right)=100-\left(s_{2}-\frac{z_{2}}{2} s_{1}\right)^{2} \\
& M R_{1}\left(s_{2}\right) \Rightarrow \frac{\partial v_{1}\left(s_{1}, s_{2}\right)}{\partial s_{1}}=-2\left(s_{1}-\frac{3}{2} s_{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& M R I(20)=30 \\
& U_{1}(30,20)>U_{1}(20,20) \rightarrow S_{1} \text { TIENE InENTVOS } \\
& \text { UNILATARAGS A } \\
& \text { DESVIARE DE }(20,20)
\end{aligned}
$$

\qquad
52

$F_{0}=\{(6,6) ;(P, P)\}$

Battle of the sexes

	G	P
G	$\underline{2.1}$	0.0
P	0,0	1.2

$B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { if } s_{-i}=G \\ P & \text { if } s_{-i}=P\end{cases}$

Battle of the sexes

	G	P
G	$\frac{2,1}{}$	0,0
P	0,0	1,2

$B R_{i}\left(s_{-i}\right)= \begin{cases}G & \text { if } s_{-i}=G \\
P & \text { if } s_{-i}=P\end{cases}$

Matching pennies (Pares o Nones) - Simultaneou
$52 \quad(1,2)$
51
 $(1,2)$

$$
\begin{aligned}
& \text { First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the } \\
& \text { previous theorem. } \\
& \text { Proof. } \\
& \text { By contradiction: } \\
& \text { Suppose that the results from IDSDS (} \mathbf{s}^{*} \text {) is not a Nash Equilibrium }
\end{aligned}
$$

Proof
First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the previous theorem.
previous
Proof.
By contr

- Suppose that the results from IDSDS (s^{*}) is not a Nash Equilibrium
- For some individual i there exits s s such that $u_{i}\left(s_{i}, s_{i=i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{i=i}^{*}\right)$
Proof
First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the
previous theorem.
Proof.
By cont
- Suppose that the results from IDSDS (s^{*}) is not a Nash Equilibrium
- For some individual i there exits s_{i} such that
$u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)$
- But then sic could not have been eliminated
Proof
First let's proof its a Nash Equilibrium. The fact that is unique is trivial by the
previous theorem.
Proof.
Suppose that the results from IDSDS (s^{*}) is not a Nash Equilibrium
- For some individual i there exits s_{i} such that $u_{i}\left(s_{i}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*_{i}^{*}}\right)$
- But then s_{i} could not have been eliminated
- And this is a contradiction!

Lecture 12: Game Theory // Nash equilibrium

Dominance
Nash equilibrium
Some examples
Relationship to dominance
Examples

Lecture 12: Game Theory // Nash equilibrium
Dominance
Nash equilibrium
Some examples.
Relationship to dominances
Examples

Lecture 12: Game Theory // Nash equilibrium
Dominancel
Weakly dominated strategies
Nash equilbrium
Some examples
Relationsthip to dominances
Examples
Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

Cournot Competition
We will apply the concept of pure Nash equilibrium to analyze oligopoly markets

- Suppose that there are two firms that produce the same product have zero marginal cost of production.

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero
marginal cost of production.
If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse demand function is given by:

$$
P(Q)=120-Q, Q=q_{1}+q_{2}
$$

Cournot Competition

- We will apply the concept of pure Nash equilibrium to analyze oligopoly markets
- Suppose that there are two firms that produce the same product have zero

If final cost of production.
If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse
demand function is given by:

$$
P(Q)=120-Q, Q=q_{1}+q_{2}
$$

- Strategy space is $S_{i}=[0,+\infty)$
\rightarrow gamelan Firmas Conpien gu Curideses.
marginal cost of production.
- If firm 1 and 2 produce q_{1} and q_{2} units of the commodity respectively, the inverse
demand function is given by:

\rightarrow The utility function of player i is given by: $\left.\xrightarrow[\pi_{1}\left(q_{1}, q_{2}\right)=\left(120-\left(q_{1}+q_{2}\right) q_{1}\right)]{\longrightarrow} \pi_{6}=P(Q) q_{1}-\subset \mathcal{T} \mathcal{T}_{1}\right)^{P}$
$\left(\sqrt{100} q_{1}-q_{2}\right) q_{1}$

Cournot Competition

$$
\begin{array}{r}
\rightarrow \frac{\partial \pi_{1}}{\partial q_{1}}=\nabla \frac{200-z q_{1}-q_{2}=0}{\frac{120-q_{2}}{2}=q_{1}^{*}}
\end{array}
$$

Cournot Competition

- Are there any strictly dominant strategies?
- Are there any strictly dominant strategies? The answer is no, why?
$-\underbrace{\text { Are there any strictly dominated strategies? }}$

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?
- The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0
- Are there any others? given q_{-i},
$\frac{d \pi_{i}}{d q_{i}}\left(120-q_{j}-q_{-i}\right) q_{i}=120-2 q_{i}-q_{-i}$

Cournot Competition

- Are there any strictly dominant strategies? The answer is no, why?
- Are there any strictly dominated strategies?

Are there any strictly dominated strategies?
The strategies $q_{i} \in(120,+\infty)$ are strictly dominated by the strategy 0

- Therefore 60 strictly dominates any $q_{i} \in(60,120]$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in[0,+\infty)$ such that $B R_{i}\left(q_{-i}\right)=q_{i}$

Cournot Competition

$$
B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}
$$

- for any $q_{i} \in[0,60]$, there exists some $q_{-i} \in[0,+\infty)$ such that $B R_{i}\left(q_{-i}\right)=q_{i}$
- Such a q_{i} can never be strictly dominated

Cournot Competition
- $B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$.
- $q_{-i}=[0,60]$
- Therefore $q_{i} \in[0,30)$ are strictly dominated by $q_{i}=30$

Cournot Competition

$$
\begin{aligned}
& B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2} . \\
& q_{-i}=[0,60] \quad q_{i} \in[0,60] \\
& \text { Therefore } q_{i} \in[0,30) \text { are strictly dominated by } q_{i}=30
\end{aligned}
$$

- After two rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[30,60]$

```
Cournot Competition
\(B R_{i}\left(q_{-i}\right)=\frac{120-q-i}{2}\)
\(\rightarrow q_{-i=[30,60]}\)
```

- 45 strictly dominates all strategies $q_{i} \in(45,60]$

After three evunds of deletion of strictly dominated strategies, we are left with $S_{i}=[30,45]$

Cournot Competition
$B R_{i}\left(q_{-i}\right)=\frac{120-q_{-i}}{2}$

- $q_{-i}=[30,45]$
- 37.5 strictly dominates all strategies $q_{i} \in[30,37.5]$
- After four rounds of deletion of strictly dominated strategies, we are left with: $S_{i}=[37.5,45]$

- In a perfectly competitive market, price equals marginal cost and the total
quantity produced will be $Q=12$.
quantity produced will be $Q=120$.
- A monopolist would solve the following maximization problem:
$\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600$.
- The profits to each firm in the Cournot Competition is less than half of th
monopoly profits

Cournot Competition vs Monopoly (cartel)
price equals marginal cost and the total
In a perfectly competitive market, p .
quantity produced will be $Q=120$.

- A monopolist would solve the following maximization problem: $\max _{Q}(120-Q) Q \Rightarrow Q^{*}=60, P^{*}=60, \Pi^{m}=3600$.
- The profits to each firm in the Cournot Competition is less than half of the monopoly profits
- In a duopoly, externalities are imposed on the other firm

Cournot Competition - General case

- n firms are competing a la Cournot

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by
$P\left(q_{1}+q_{2}+\cdots q_{n}\right)$.
- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm

Cournot Competition - General case

- n firms are competing a la Cournot
- The inverse demand function is given by
$P\left(q_{1}+q_{2}+\cdots q_{n}\right)$.
- Suppose that the cost function is $c_{i}\left(q_{i}\right)$ for firm i
- To simplify notation, let $Q_{-i}=\sum_{j \neq i} q_{j}$

```
Cournot Competition - General case
    - nfirms are competing a la Cournot
    - The inverse demand function is given by
        P(q}\mp@subsup{q}{1}{}+\mp@subsup{q}{2}{}+\cdots\mp@subsup{q}{n}{})
    - Suppose that the cost function is ci(qi) for firm
```



```
    *
                            maxp(\mp@subsup{q}{i}{}+\mp@subsup{Q}{-i}{})\mp@subsup{q}{i}{}-\mp@subsup{c}{i}{(q}\mp@subsup{q}{i}{})
```

```
Cournot Competition - General case
```

Cournot Competition - General case
$\max _{q_{i}} p\left(q_{i}+Q_{-i}\right) q_{i}-c_{i}\left(q_{i}\right)$
$\max _{q_{i}} p\left(q_{i}+Q_{-i}\right) q_{i}-c_{i}\left(q_{i}\right)$
- First order condition implies:
- First order condition implies:
$q_{i} \frac{d P}{d Q}\left(q_{i}+Q_{-i}\right)+P\left(q_{i}+Q_{-i}\right)=\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)$
$q_{i} \frac{d P}{d Q}\left(q_{i}+Q_{-i}\right)+P\left(q_{i}+Q_{-i}\right)=\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)$
$q_{i} \frac{d P}{d Q}(Q)+P(Q)=\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)$
$q_{i} \frac{d P}{d Q}(Q)+P(Q)=\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)$
$P(Q)-\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)=-q_{i} \frac{d P}{d Q}(Q)$
$P(Q)-\frac{d c_{i}}{d q_{i}}\left(q_{i}\right)=-q_{i} \frac{d P}{d Q}(Q)$
$\frac{P(Q)-\frac{d c_{i}}{d_{i}}\left(q_{i}\right)}{P(Q)}=-\frac{q_{i}}{Q} \frac{Q}{P(Q)} \frac{d P}{d Q}(Q)$
$\frac{P(Q)-\frac{d c_{i}}{d_{i}}\left(q_{i}\right)}{P(Q)}=-\frac{q_{i}}{Q} \frac{Q}{P(Q)} \frac{d P}{d Q}(Q)$
$\frac{P(Q)-\frac{d_{i}}{d_{i}}\left(q_{i}\right)}{P(Q)}=-\frac{q_{i}}{Q} \frac{1}{Q_{i}(Q)}$

```
            \(\frac{P(Q)-\frac{d_{i}}{d_{i}}\left(q_{i}\right)}{P(Q)}=-\frac{q_{i}}{Q} \frac{1}{Q_{i}(Q)}\)
```

Cournot Competition - General case
$\frac{P(Q)-\frac{d c_{i}}{q_{Q}}\left(q_{i}\right)}{P(Q)}=-\frac{q_{i}}{Q} \frac{1}{\varepsilon_{Q, P}(Q)}$
Therefore in a pure strategy Nash equilibrium $\left(q_{1}^{*}, q_{2}^{*}, \ldots, q_{n}^{*}\right)$ with
$Q^{*}=q_{1}^{*}+q_{2}^{*}+\cdots q_{n}^{*}$, we must have
$\frac{P\left(Q^{*}\right)-\frac{d \alpha_{1}}{d_{q}^{*}}\left(q_{\mathrm{i}}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{i}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}$,
$\frac{P\left(Q^{*}\right)-\frac{d_{0}}{d q_{2}}\left(q_{2}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{2}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}$,
$\frac{P\left(Q^{*}\right)-\frac{d \tau_{n}}{d_{q_{0}}}\left(q_{n}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{n}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}$.

Cournot Competition - General case

- Suppose that all firms have exactly the same cost function c
$\frac{P\left(Q^{*}\right)-\frac{d c}{d q_{0}}\left(q_{i}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{1}^{*}}{Q^{*}} \frac{1}{\frac{Q_{Q}, P}{}\left(Q^{*}\right)}$,
$P\left(Q^{*}\right)-\frac{d c}{d q_{0}}\left(q_{2}^{*}\right)=-\frac{q_{2}^{*}}{Q^{*}} \frac{1}{P\left(Q^{*}\right)}$
$\frac{P\left(Q^{*}\right)-\frac{d c}{d q_{1}}\left(q_{n}^{*}\right)}{P\left(Q^{*}\right)}=-\frac{q_{n}^{*}}{Q^{*}} \frac{1}{\varepsilon_{Q, P}\left(Q^{*}\right)}$.

Cournot Competition - General case

Let us conjecture that there exists a pure strategy Nash equilibrium that is symmetric, in which $q_{1}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}$

Cournot Competition - General case

- Let us conjecture that there exists a pure strategy, Nash equilibrium that is symmetric, in which $q_{i}^{*}=q_{2}^{*}=\cdots q_{n}^{*}=q^{*}$
- In this case $Q^{*}=n q^{+}$

$$
\frac{P\left(n q^{*}\right)-\frac{d \epsilon}{d \epsilon_{1}}\left(q^{*}\right)}{P\left(n q^{*}\right)}=-\frac{1}{n} \frac{1}{\varepsilon_{Q, P}\left(n q^{*}\right)}
$$

Cournot Competition - General cas

Let us conjecture that there exists a pure strategy Nash equilibrium that is
symmetric
,

- In this case $Q^{+}=n q^{*}$

$$
\frac{P\left(n q^{*}\right)-\frac{d_{c}}{d q^{*}}\left(q^{*}\right)}{P\left(n q^{*}\right)}=-\frac{1}{n \in Q, P\left(n q^{*}\right)}
$$

- Rewriting

$$
P\left(Q^{*}\right)=\frac{1}{1+\frac{1}{n} \frac{1}{\varepsilon_{Q},(P)}\left(Q^{*}\right)} \frac{\partial c}{d q}\left(\frac{Q^{*}}{n}\right)
$$

Cartels Suppose there are three firms who face zero marginal cost - Suppose there are three firms who face zero marginal cost
The inverse demand function is given by:

$$
p\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q
$$

- The first order condition gives
$1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}$.

Cartels

- Suppose there are three firms who face zero marginal cost
-The inverse demand function is given by
$\rho\left(q_{1}+q_{2}+q_{3}\right)=1-q_{1}-q_{2}-q_{3}=1-Q$
- The first order condition gives
$1-2 q_{i}-Q_{-i}=0 \Longrightarrow q_{i}=\frac{1-Q_{-i}}{2} \Longrightarrow B R_{i}\left(Q_{-i}\right)=\frac{1-Q_{-i}}{2}$
- In a Nash equilibrium we must have:
$q_{i}^{*}=\frac{1-q_{2}^{*}-q_{3}^{*}}{2}$
$q_{2}^{*}=\frac{1-q_{1}^{*}-q_{3}^{*}}{2}$
$q_{3}^{*}=\frac{1-q_{i}^{*}-q_{2}^{*}}{2}$.
Cartels
- The easiest way to solve this first, let us add the three equations to get $Q^{*}=\frac{3}{2}-Q^{*} \Rightarrow Q^{*}=\frac{3}{4}$.

Cartels

- The easiest way to solve this first, let us add the three equations to get $Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}$.
- Note that $q_{i}^{i}=\frac{1}{2}-\frac{q_{i}^{i}-q_{i}^{i}}{2} \Rightarrow \frac{q_{i}^{i}}{2}=\frac{1}{2}-\frac{q^{*}}{2} \Rightarrow q_{i}^{i}=\frac{1}{4}$

Cartels

- The easiest way to solve this first, let us add the three equations to get $Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4}$.
- Note that $\quad q_{i}^{*}=\frac{1}{2}-\frac{q_{i}^{*}-q_{3}^{*}}{2} \Longrightarrow \frac{q_{i}^{*}}{2}=\frac{1}{2}-\frac{Q^{*}}{2} \Longrightarrow q_{i}^{*}=\frac{1}{4}$.
- $q_{i}^{*}=q_{2}^{*}=q_{3}^{*}=\frac{1}{4}$
Cartels
The easiest way to solve this first, let us add the three equations to get:

$$
Q^{*}=\frac{3}{2}-Q^{*} \Longrightarrow Q^{*}=\frac{3}{4} \text {. }
$$

Note that $q_{1}^{*}=q_{2}^{*}=q_{3}^{*}=\frac{1}{4}$
Price is $p^{*}=1 / 4$ and all firms get the same profits of $1 / 16$
Cartels \quad Two of the firms merge into firm A, while one of the firms remains single, call
that firm B

Cartels

- Two of the firms merge into firm A, while one of the firms remains single, call that firm B
- Each firm then again faces the profit maximization problem: $\max _{q_{i}}\left(1-q_{i}-q_{-i}\right) q_{i} \Longrightarrow B R_{i}\left(q_{-i}\right)=\frac{1-q_{-i}}{2}$.
- Therefore

$$
\begin{aligned}
& q_{A}^{*}=\frac{1-q_{B}^{*}}{2} \\
& q_{B}^{*}=\frac{1-q_{A}^{*}}{2} .
\end{aligned}
$$

Cartels

- Solving this:
$q_{A}^{*}=q_{8}^{*}=\frac{1}{3}$
- The price is then $p^{*}=1 / 3$

Cartels

- Solving this:
$q_{\mathrm{i}}=q_{\mathrm{g}}^{\mathrm{q}}=\frac{1}{3}$
- The price is then $p^{*}=1 / 3$
- If the profits are shared equally among firms 1 and 2 who have merged, then wits of firms 1 and 2 are $1 / 18$ whereas firm 3 obtains a profit of $1 / 9$

Cartels
Cartels
 - You might expect that 3 may want to join the cartel as well...
 - In the monopolist problem, we solve
$\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2}$.

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2} .
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of
$\frac{1}{12}<\frac{1}{9}$

Cartels

- You might expect that 3 may want to join the cartel as well...
- In the monopolist problem, we solve:

$$
\max _{Q}(1-Q) Q \Longrightarrow Q^{*}=\frac{1}{2} .
$$

- Total profits then are given by $\frac{1}{4}$ which means that each firm obtains a profit of
- Firm 3 clearly wants to stay out
Cartels
There are many ifficulties associated with sustaining collusive agreements (e.g., the
OPEC cartel)

