Lecture 13

Tuesday, March 23, 2021 2:24 PM

Lecture13	
Lecture 13: Come Theory // Mark	quilibrium
Lecture 13: Game Theory // Nash e	quantitutti
Mauricio Romero	
	(D) (B) (2) (2) 2 090
Lecture 13: Game Theory // Nash equilibrium	
Examples - Continued	
	10110,101121121 2 000
Lecture 13: Game Theory // Nash equilibrium	
Lecture 13. Game Pricovy // Wash equinoritati	
Examples - Continued	
	(D) (B) (2) (2) 2 090
Lecture 13: Game Theory // Nash equilibrium	
Examples - Continued Cournot - Revisited Bertrand Competition	
Hotelling and Voting Models	
	(ロ) (内) (こ) (こ) こ つうの
Cournot Competition	
 N identical firms competing on the same market 	
	(D) (Ø) (2) (2) 2 040
Cournot Competition	
 N identical firms competing on the same market Marginal cost is constant and equal to c 	
-	

Cournot Competition	
$\sum_{j=1}^{N} q^{j} = \frac{N(a-c)}{b(N+1)}$ $p = a - N \frac{a-c}{(N+1)} < a$ $\Pi^{j} = \frac{(a-c)^{2}}{b(c+1)^{2}}$	
$\Pi^j = \frac{(u+v)^2}{b(N+1)^2}$	
► As $N \to \infty$ we get close to perfect competition ► $V = 1$ we get the monopoly case $u = 1$ $V = 1$	
π ^{ευ} = Π.	1 2 01
Lecture 13: Game Theory // Nash equilibrium	
Examples - Continued Courner - Revisited Betrand Competition - Different costs Betrand Competition - 3 Firms Hotelling and Voting Models	
(B) (Ø) (3) (3)	
Bertrand_Competition	
Consider the alternative model in which firms set prices	
In the monopolist's problem, there was not distinction between a quantity-se	tting
model and a price setting	
In oligopolistic models, this distinction is very important	
.0	
Bertrand Competition	
 Consider two firms with the same marginal constant marginal cost of product and demand is completely inelastic 	tion
Each firm simultaneously chooses a price $p_i \in [0, +\infty)$	
▶ If p_1, p_2 are the chosen prices, then the utility functions of firm <i>i</i> is given by:	
$ \underbrace{ \mathbb{E} (p_i, p_{-i}) = \begin{cases} 0 & \text{if } p_i > p_{-i}, \\ (p_i - c_j) \frac{Q(p_i)}{2} & \text{if } p_i \equiv p_{-i}, \\ (p_i - c_j) Q(p_i) & \text{if } p_i = p_{-i} \end{cases} } $	
Bertrand Competition	
► Assume that the marginal revenue function is strictly decreasing (MR [*] (p _i) < R(p _i) = p _i Q(p _i)	0): (1)
$\begin{array}{rcl} MR(p_i) &=& Q(p_i) + p_i Q'(p_i) \\ &=& Q(p_i) \left(1 + \varepsilon_{Q,p}(p_i)\right). \end{array}$	(2) (3)
(0) (0) (2) (3	1 2 0
Bertrand Competition	
\blacktriangleright Assume that the marginal revenue function is strictly decreasing ($M\!R'(p_i) <$	
$R(p_i) = p_i Q(p_i)$ $MR(p_i) = Q(p_i) + p_i Q'(p_i)$	(1) (2)
$= Q(ho_l)(1+arepsilon_{Q,p}(ho_l)).$	(3)
▶ Let $p^m > c \ge 0$ be the monopoly price such that $MR(p^m) = c$.	

íα

Bertrand Competition

Case 2: $\rho_1^* \in (c, \rho^m]$

 $\blacktriangleright BR_2(p_1^*) = p_1^* - \varepsilon$

101101121121 2 040

Bertrand Competition

Case 2: $p_1^* \in (c, p^m]$

- $\blacktriangleright BR_2(p_1^*) = p_1^* \varepsilon$
- $\blacktriangleright \ BR_1(p_1^*-\varepsilon)=p_1^*-2\varepsilon$

(D) (Ø) (2) (3) (2) (0)

Bertrand Competition

Case 2: $p_1^* \in (c, p^m]$

- $\blacktriangleright BR_2(p_1^*) = p_1^* \varepsilon$
- $\blacktriangleright BR_1(p_1^*-\varepsilon)=p_1^*-2\varepsilon$
- So this cannot be a Nash equilibrium

101101121121 2 1000

Bertrand Competition

Case 3: $p_1^* < c$

▶ $BR_2(p_1^*) \in [p_1^* + \varepsilon, \infty)$

10110112121

Bertrand Competition

Case 3: $p_1^* < c$

- ► $BR_2(p_1^*) \in [p_1^* + \varepsilon, \infty)$
- So this cannot be a Nash equilibrium

101101121121 2:05

Bertrand Competition

Case 4: $p_1^* = c$

▶ $BR_2(p_1^*) = (c, +\infty)$

Bertrand Competition - different costs

- $\blacktriangleright~$ If $\rho_2^*=\rho_1^*=c_1$, then firm 2 would be making a loss
- $\blacktriangleright~$ If $p_2^*=p_1^*=c_2$, then firm 1 would cut prices to keep the whole market
- ▶ Any pure strategy NE must have $p_2^* \le c_1$. Otherwise, if $p_2^* > c_1$ then firm 1 could undercut p_2^* and get a positive profit

Bertrand Competition - different costs

- $\blacktriangleright~$ If $\rho_2^*=\rho_1^*=c_1$, then firm 2 would be making a loss
- $\blacktriangleright~$ If $\rho_2^*=\rho_1^*=c_2$, then firm 1 would cut prices to keep the whole market
- ▶ Any pure strategy NE must have $p_2^* \le c_1$. Otherwise, if $p_2^* > c_1$ then firm 1 could undercut p_2^* and get a positive profit

(D) (Ø) (2) (2) 2 00

Bertrand Competition - different costs

- $\blacktriangleright~$ If $p_2^* = p_1^* = c_1$, then firm 2 would be making a loss
- $\blacktriangleright~$ If $\rho_2^*=\rho_1^*=c_2$, then firm 1 would cut prices to keep the whole market
- ▶ Any pure strategy NE must have $p_2^* \le c_1$. Otherwise, if $p_2^* > c_1$ then firm 1 could undercut p_2^* and get a positive profit
- ▶ Firm 1 would really like to price at some price p₁^{*} just below the marginal cost of firm 2, but wherever p₂ is set, Firm 1 would try to increase prices
- No NE because of continuous prices

Bertrand Competition - discreet prices

 $\blacktriangleright \text{ Suppose } c_1 = 0 < c_2 = 10$

- $\blacktriangleright \text{ Suppose } c_1 = 0 < c_2 = 10$
- Firms can only set integer prices.

101101121121 2 0

Bertrand Competition - discreet prices

- $\blacktriangleright \text{ Suppose } c_1 = 0 < c_2 = 10$
- Firms can only set integer prices.
- \blacktriangleright Suppose that (ρ_1^*,ρ_2^*) is a pure strategy Nash equilibrium...

	ß	(1) (2) (2) (2)
Bertrand Competition - discreet prices	R=O	1
Case 1: $\underline{p_1^* = 0}$	4	Cz=10
Best response of firm 2 is to choose of firm 2 is to choose of firm 2 is to choose of the second	ose some $p_2^* > p_1^*$	

Case 1: $p_1^* = 0$	<u>⊢</u>		4	
Best response of fire	m 2 is to choose some p_2^* >	v		
Bertrand Competition - dis	creet prices		(2)(2) 2 040	
Case 1: $\rho_1^* = 0$				
Best response of fire	m 2 is to choose some ρ_2^* >	> p_1^*		
p ₁ [*] cannot be a best strictly positive prof	t response to p_2^* since by se fits	tting $p_1 = p_2^*$ firm 1 w	ould get	
Bertrand Competition - dis	creet prices	(B) (Ø)	(2) (2) 2 040 R	
Case 2: $p_1^* \in \{1, 2, \dots, n\}$	9}			•
 Best response of fire 	m 2 is to set any price p_2^* >	P1 C-0	5 (2=10)	
		101181	(2) (2) 2 OLO	
Bertrand Competition - dis	creet prices			
Case 2: $p_1^* \in \{1, 2, \dots, n\}$	9}			
	m 2 is to set any price p_2^* >			
If p ₂ [*] > p ₁ [*] + 1, ther have an incentive to	n this cannot be a Nash equ o raise the price	illibrium since then firr	n 1 would	
		(D) (Ø)	·2··2· 2 040	
Bertrand Competition - dis Case 2: $p_1^* \in \{1, 2,, N\}$				
	m 2 is to set any price p_2^* >	· P [*]		
If p [*] ₂ > p [*] ₁ + 1, ther	1 this cannot be a Na <u>sh equ</u>		n 1 would	
		1 (2,3)		R=8
The only equilibrium	$\frac{p_1, p_1+1}{EN}$	(3, 4) (4,5) (3,4)		Pr7 C==10
Bertrand Competition - dis	creet prices	1 (6.2)		Part
Case 3: $p_1^* = 10$	em 2 is to est	(4.0)	Cr=U	P=O Cz=
 Best responses of fi 	rm 2 is to set any price p ₂ .	= <i>P</i> 1	•	P.=10
				Peel

, 11z=0

Bertrand Competition - 3 firms

- ▶ If (p_1, p_2, p_3) was a pure strategy Nash equilibrium, it can never be the case that min $\{p_1, p_2, p_3\} < c$
- ▶ If (p_1, p_2, p_3) was a pure strategy Nash equilibrium, it can never be the case that min $\{p_1, p_2, p_3\} > c$
- ▶ We must have min{p₁, p₂, p₃} = c

Bertrand Competition - 3 firms

- ▶ If (p_1, p_2, p_3) was a pure strategy Nash equilibrium, it can never be the case that min $\{p_1, p_2, p_3\} < c$
- \blacktriangleright If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1,p_2,p_3\}>c$ ▶ We must have $\min\{p_1, p_2, p_3\} = c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c?

Bertrand Competition - 3 firms

- \blacktriangleright If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1,p_2,p_3\} < c$
- ▶ If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1,p_2,p_3\} > c$
- ▶ We must have min{p₁, p₂, p₃} = c
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c?

Bertrand Competition - 3 firms

- \blacktriangleright If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1,p_2,p_3\} < c$
- \blacktriangleright If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1,p_2,p_3\}>c$
- ▶ We must have $\min\{p_1, p_2, p_3\} = c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c? No since that firm would want to raise his price a bit and get strictly better profits There must be at least two firms that set price equal to marginal cost

Bertrand Competition - 3 firms

- ▶ If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that min{ $p_1,p_2,p_3\} < c$ \blacktriangleright If (p_1,p_2,p_3) was a pure strategy Nash equilibrium, it can never be the case that $\min\{p_1, p_2, p_3\} > c$
- ▶ We must have min{p₁, p₂, p₃} = c
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to C7 No since that firm would want to raise his price a bit and get strictly better profits
- ▶ There must be at least two firms that set price equal to marginal cost
- Set of all pure strategy Nash equilibria are given by: $\{(\underline{c},\underline{c},\underline{c}+\varepsilon):\varepsilon\geq 0\}\cup\{(\underline{c},c+\varepsilon,\underline{c}):\varepsilon\geq 0\}\cup\{(c+\varepsilon,c,\underline{c}):\varepsilon\geq 0\}.$

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

Hotelling and Voting Models

Hotelling

▶ Two firms i = 1, 2 decide to produce heterogeneous products $x_1, x_2 \in [0, 1]$

Hotelling

- $\blacktriangleright~$ Two firms i=1,2 decide to produce heterogeneous products $x_1,x_2\in[0,1]$
- ▶ x_1, x_2 represents the characteristic of the product

(D) (B) (S) (S) (S) (S)

Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products $x_1, x_2 \in [0, 1]$
- x₁, x₂ represents the characteristic of the product
- \blacktriangleright For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]

010 18 121 121 2 040

Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products $x_1, x_2 \in [0, 1]$
- x₁, x₂ represents the characteristic of the product
- \blacktriangleright For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]
- \blacktriangleright In this interpretation, the firms are each deciding where to locate on this line

Hotelling

- Two firms i = 1, 2 decide to produce heterogeneous products $x_1, x_2 \in [0, 1]$
- x₁, x₂ represents the characteristic of the product
- \blacktriangleright For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]
- In this interpretation, the firms are each deciding where to locate on this line
 Consumers are uniformly distributed on the line [0, 1], where θ ∈ [0, 1] represents the consumers ideal type of product that he would like to consume

D (0) (2) (2) 2 0

Hotelling

- $\blacktriangleright~$ Two firms i=1,2 decide to produce heterogeneous products $x_1,x_2\in[0,1]$
- x₁, x₂ represents the characteristic of the product
- \blacktriangleright For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0,1]
- In this interpretation, the firms are each deciding where to locate on this line
- \blacktriangleright Consumers are uniformly distributed on the line [0,1], where $\theta \in [0,1]$ represents the consumers ideal type of product that he would like to consume
- ▶ If the firms i = 1, 2 respectively produce products of characteristic x_1 and x_2 , then a consumer at θ would consume whichever product is closest to θ

Hotelling

- ▶ Two firms i = 1, 2 decide to produce heterogeneous products $x_1, x_2 \in [0, 1]$
- x₁, x₂ represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval [0, 1]
- In this interpretation, the firms are each deciding where to locate on this line
- \blacktriangleright Consumers are uniformly distributed on the line [0,1], where $\theta \in [0,1]$ represents the consumers ideal type of product that he would like to consume
- If the firms i = 1, 2 respectively produce products of characteristic x_1 and x_2 , then a consumer at θ would consume whichever product is closest to θ
- a consumer at θ would consume whichever product is closest to θ
 The game consists of the two players i = 1, 2, each of whom chooses a point x₁, x₂ ∈ [0, 1] simultaneously.

(口)(閉)(是)(是) 是 の

Hotelling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1: $u_1(x_1, x_2) = \begin{cases} \frac{x_1+x_2}{2} & \text{ if } x_1 < x_2, \\ \frac{1}{2} & \text{ if } x_1 = x_2, \\ 1 - \frac{x_1+x_2}{2} & \text{ if } x_1 > x_2. \end{cases}$

4.0

Hotelling Compute the best response functions • Case 1: Suppose first that $x_2 > 1/2$. Then setting x_1 against x_2 yields a payoff of $\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ if $x_1 < x_2$.

$$u_1(x_1, x_2) = \begin{cases} \frac{|x_1-x_2|}{2} & \text{if } x_1 < x_2, \\ \frac{1}{2} & \text{if } x_1 = x_2, \\ 1 - \frac{|x_1+x_2|}{2} & \text{if } x_1 > x_2. \end{cases}$$

This utility function has a discontinuity at $x_1 = x_2$ and jumps down to 1/2 at $x_1 = x_2$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible) **Case** 2: suppose next that $x_2 < 1/2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)

