Lecture 13
Tuesday, March 23, 2021 2:24 PM

물
Lecture 13

Lecture 13: Game Theory // Nash equilibrium
Mauricio Romero
Macer

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Cournot - Revisited
Bertrand Competition - Different costs
Betrand Competition - 3 Firms
Bertrand Competition - 3 Firm
Hotelling and Voting Models

Cournot Competition

- N identical firms competing on the same market

Cournot Competition

- N identical firms competing on the same market
- Marginal cost is constant and equal to c

Cournot Competition

- The FOC for a given firm is:
\qquad
- The symmetric Nash equilibrium is given by

$$
q^{*}=\frac{a-c}{b(N+1)}
$$

- Thus

$$
Q^{7}=\sum_{i=1}^{N} q^{j}=\frac{N(a-c)}{b(N+1)}
$$

Cournot Competition

$$
\lim _{N \rightarrow \infty} P=\lim _{n \rightarrow \infty} a-\frac{N(a-c)}{N+1}=a-(a-c)=c=c \mathrm{cmg}
$$

$$
\sum_{j=1}^{N} q^{j}=\frac{N(a-c)}{b(N+1)}=\boldsymbol{Q}
$$

$$
p=a-N \frac{a-c}{(N+1)}<a
$$

$$
\Pi^{j}=\frac{(a-c)^{2}}{b(N+1)^{2}}
$$

- As $N \rightarrow \infty$ we cratelaceract competition

Cournot Competition

$$
\begin{aligned}
\sum_{j=1}^{N} q^{j} & =\frac{N(a-c)}{b(N+1)} \\
p & =a-N \frac{a-c}{(N+1)}<a \\
\Pi^{j} & =\frac{(a-c)^{2}}{b(N+1)^{2}}
\end{aligned}
$$

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Bertrand Competition
Sertrand Competition - Different costs
Bertrand Competition - 3 Firms
Hotelling and Voting Models
-

Bertrand Competition

- Consider the alternative model in which firms set prices
- In the monopolist's problem, there was not distinction between a quantity-setting model and a price setting
- In oligopolistic models, this distinction is very important

Bertrand Competition

- Consider two firms with the same marginal constant marginal cost of production
and demand is completely inelastic and demand is completely inelastic
- Each firm simultaneously chooses a price $p_{i} \in[0,+\infty)$
- If p_{1}, p_{2} are the chosen prices, then the utility functions of firm i is given by:

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(M R^{\prime}\left(p_{i}\right)<0\right)$:

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
\end{aligned}
$$

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(M R^{\prime}\left(p_{i}\right)<0\right)$:

$$
\begin{aligned}
R\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
\operatorname{MR(p_{i})} & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right) \\
& =Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
\end{aligned}
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.

Bertrand Competition

- Assume that the marginal revenue function is strictly decreasing $\left(\operatorname{MR}^{\prime}\left(p_{i}\right)<0\right)$:

$$
R\left(p_{i}\right)=p_{i} Q\left(p_{i}\right)
$$

$$
\begin{aligned}
K\left(p_{i}\right) & =p_{i} Q\left(p_{i}\right) \\
M R\left(p_{i}\right) & =Q\left(p_{i}\right)+p_{i} Q^{\prime}\left(p_{i}\right)
\end{aligned}
$$

$$
=Q\left(p_{i}\right)\left(1+\varepsilon_{Q, p}\left(p_{i}\right)\right)
$$

- Let $p^{m}>c \geq 0$ be the monopoly price such that $M R\left(p^{m}\right)=c$.
- Then

$$
M R\left(p_{i}\right)-c>0 \text { if } p_{i}<p^{m}, M R\left(p_{i}\right)-c<0 \text { if } p_{i}>p^{m}
$$

Bertrand Competition

- The best response function is:

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$

Bertrand Competition
Case 1: $p_{1}^{*}>p^{m}$

- $p_{2}^{*}=p^{m}$
- $B R_{2}\left(p^{m}\right)=p^{m}-\varepsilon$
- $B R_{1}\left(p^{m}-\varepsilon\right)=p^{m}-2 \varepsilon$
- So this cannot be a Nash equilibrium

Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$

Bertrand Competition

Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2$

Bertrand Competition
Case 2: $p_{1}^{*} \in\left(c, p^{m}\right]$

- $B R_{2}\left(p_{1}^{*}\right)=p_{1}^{*}-\varepsilon$
- $B R_{1}\left(p_{1}^{*}-\varepsilon\right)=p_{1}^{*}-2 \varepsilon$
- So this cannot be a Nash equilibrium

Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right) \in\left[p_{1}^{*}+\varepsilon, \infty\right)$

Bertrand Competition

Case 3: $p_{1}^{*}<c$

- $B R_{2}\left(p_{1}^{*}\right) \in\left[p_{1}^{*}+\varepsilon, \infty\right)$
- So this cannot be a Nash equilibrium

Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$

Bertrand Competition

Case 4: $p_{1}^{*}=c$

- $B R_{2}\left(p_{1}^{*}\right)=(c,+\infty)$

The unique pure strategy Nash equilibrium is $p_{1}^{*}=p_{2}^{*}=c$

Bertrand Competition

Thus in contrast to the Cournot duopoly model, in the Bertrand competition model, two firms get us back to perfect competition ($p=c$)

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued

Bertrand Competition - Different costs
Bertrand Competition - 3 Firm:
Hotelling and Voting Models:

Bertrand Competition - different costs

- Suppose that the marginal cost of firm 1 is equal to c_{1} and the marginal cost of firm 2 is equal to c_{2} where $c_{1}<c_{2}$.
- The best response for each firm.

$$
B R_{i}\left(p_{-i}\right)= \begin{cases}p_{m}^{i} & \text { if } p_{-i}>p_{m}^{i} \\ p_{-i}-\varepsilon & \text { if } c_{i}<p_{-i} \leq p_{m}^{i} \\ {\left[c_{i},+\infty\right)} & \text { if } p_{-i}=c_{i} \\ \left(p_{-i},+\infty\right) & \text { if } p_{-i}<c_{i}\end{cases}
$$

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut p^{*} and get a positive profit

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market

Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut p_{2}^{*} and get a positive profit

- Firm 1 would really like to price at some price p_{1}^{*} just below the marginal cost of firm 2, but wherever p_{2} is set, Firm 1 would try to increase prices

Bertrand Competition - different costs

- If $p_{2}^{*}=p_{1}^{*}=c_{1}$, then firm 2 would be making a loss
- If $p_{2}^{*}=p_{1}^{*}=c_{2}$, then firm 1 would cut prices to keep the whole market
- Any pure strategy NE must have $p_{2}^{*} \leq c_{1}$. Otherwise, if $p_{2}^{*}>c_{1}$ then firm 1 could undercut p_{2}^{*} and get a positive profit

Firm 1 would really like to price at some price p_{1}^{*} just below the marginal cost of firm 2, but wherever p_{2} is set, Firm 1 would try to increase prices

- No NE because of continuous prices

Bertrand Competition - discreet prices

Suppose $c_{1}=0<c_{2}=10$

- Firms can only set integer prices.

Bertrand Competition - discreet prices

- Suppose $c_{1}=0<c_{2}=10$
- Firms can only set integer prices.
- Suppose that $\left(p_{1}^{*}, p_{2}^{*}\right)$ is a pure strategy Nash equilibrium

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$

Bertrand Competition - discreet prices

Case 1: $\underline{p_{1}^{*}=0}$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$

Bertrand Competition - discreet prices

Case 1: $p_{1}^{*}=0$

- Best response of firm 2 is to choose some $p_{2}^{*}>p_{1}^{*}$
- p_{1}^{*} cannot be a best response to p_{2}^{*} since by setting $p_{1}=p_{2}^{*}$ firm 1 would get
strictly positive profits strictly positive profits

Bertrand Competition - discreet prices

$$
\text { Case 2: } p_{1}^{*} \in\{1,2, \ldots, 9\}
$$

Bertrand Competition - discreet prices

Case 2: $p_{1}^{*} \in\{1,2, \ldots, 9\}$

- Best response of firm 2 is to set any price $p_{2}^{*}>p_{1}^{*}$
- If $p_{2}^{*}>p_{1}^{*}+1$, then this cannot be a Nash equilibrium since then firm 1 would
have an incentive to raise the price have an incentive to raise the price

Bertrand Competition - discreet prices

Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$

It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of and control the whole market

$$
\frac{1}{2}(10)=5<9 .
$$

```
Bertrand Competition - discreet prices
    Case 3: pol}=1
    Best responses of firm 2 is to set any price po
    - It cannot be that p}\mp@subsup{p}{2}{*}=\mp@subsup{p}{1}{**}\mathrm{ since then firm 1 would rather deviate to a price of 9
        and control the whole market:
            \frac{1}{2}}(10)=5<9
    We must have }\mp@subsup{p}{2}{*}=\mp@subsup{p}{1}{*}+1\mathrm{ since otherwise, firm 1 would have an incentive to
```

 raise the price higher
 Bertrand Competition - discreet prices

Case 3: $p_{1}^{*}=10$

- Best responses of firm 2 is to set any price $p_{2}^{*} \geq p_{1}^{*}$
- It cannot be that $p_{2}^{*}=p_{1}^{*}$ since then firm 1 would rather deviate to a price of 9 and control the whole market: $\frac{1}{2}(10)=5<9$.
- We must have $p_{2}^{*}=p_{1}^{*}+1$ since otherwise, firm 1 would have an incentive to raise the price higher
- $\left(p_{1}^{*}, p_{2}^{*}\right)=(10,11)$ is a Nash equilibrium

Bertrand Competition - discreet prices

Case 4: $p_{1}^{*}=11$

- Best response of firm 2 is to set $p_{2}^{*}=1$
- Firm 1 would not be best responding since by setting a price of $p_{1}=10$, it would
get strictly positive profits

- Firm $2^{\prime s}$ best response is to set either $p_{2}^{*}=p_{1}^{*}-1$ or $p_{2}^{*}=p_{1}^{*}$
Bertrand Competition - discreet prices
Case 5: $p_{1}^{*} \geq 12$

\rightarrow Firm ${\text { 2's best response is to set either } p_{2}^{*}=p_{1}^{*}-1 \text { or } p_{2}^{*}=p_{1}^{*}}^{-}$| Firm 1 is not best responding since by lowering the price it can get the whole |
| :--- |
| market. |

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Bertrand Competition - Different co
Bertrand Competition - 3 Firms

Bertrand Competition - 3 firms

- Symmetric marginal costs model but with 3 firms

Bertrand Competition - 3 firms

Bertrand Competition - 3 firms

- If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that
$\min \left\{p_{1}, p_{2}, p_{3}\right\}<$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$

Bertrand Competition - 3 firms
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<c$
If (p_{1}, p_{2}, p_{3}) was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
-We must have $\underbrace{\min \left\{p_{1}, p_{2}, p_{3}\right\}=c}$

Bertrand Competition - 3 firms
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$

- We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$

Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ?

Bertrand Competition - 3 firms

- If (p_{1}, p_{2}, p_{3}) was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<$
If (p_{1}, p_{2}, p_{3}) was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
- Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ?

Bertrand Competition - 3 firms
If (p_{1}, p_{2}, p_{3}) was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, P_{3}\right\}<$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>c$
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ? No since that firm would want to raise his price a bit and get strictly better profits

- There must be at least two firms that set price equal to marginal cost

Bertrand Competition - 3 firms
If (p_{1}, p_{2}, p_{3}) was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}<$
If $\left(p_{1}, p_{2}, p_{3}\right)$ was a pure strategy Nash equilibrium, it can never be the case that $\min \left\{p_{1}, p_{2}, p_{3}\right\}>$
We must have $\min \left\{p_{1}, p_{2}, p_{3}\right\}=c$
Can there be a pure strategy Nash equilibrium in which just one firm sets price equal to c ? No since that firm would want to raise his price a bit and get strictly better profits
There must be at least two firms that set price equal to marginal cost

- Set of all pure strategy Nash equilibria are given by.
$\{(\varepsilon, \varepsilon, c+\varepsilon): \varepsilon \geq 0\} \cup\{(c, c+\varepsilon, c): \varepsilon \geq 0\} \cup\{(c+\varepsilon, c, c): \varepsilon \geq 0\}$.

Lecture 13: Game Theory // Nash equilibrium

Examples - Continued
Bertrand Competition
Bertrand Competition - Different cost
Hotelling and Voting Models
Hotelling
\rightarrow Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
Hotelling
\rightarrow Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$

x_{1}, x_{2} represents the characteristic of the product

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city"
represented by the interval $[0,1]$

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product

For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$

- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume

Hotelling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents the consumers ideal type of product that he would like to consume
If the firms $i=1,2$ respectively produce products of characteristic x_{1} and x_{2}, then If the firms i $=1,2$ respectively produce products of characteristic
a consumer at θ would consume whichever product is closest to θ

Hosteling

- Two firms $i=1,2$ decide to produce heterogeneous products $x_{1}, x_{2} \in[0,1]$
- x_{1}, x_{2} represents the characteristic of the product
- For example, this could be interpreted as a model in which there is a "linear city" represented by the interval $[0,1]$
- In this interpretation, the firms are each deciding where to locate on this line
- Consumers are uniformly distributed on the line $[0,1]$, where $\theta \in[0,1]$ represents
the consumers ideal type of product that he would like to consume
- If the firms $i=1,2$ respectively produce products of characteristic x_{1} and x_{2}, then
a consumer at θ would consume whichever product is closest to θ
- The game consists of the two players $i=1,2$, each of whom chooses a point $x_{1}, x_{2} \in[0,1]$ simultaneously.

Hotelling

$$
\frac{2 x=x_{1}+x_{2}}{x=\frac{x_{1}+x_{2}}{2}}
$$

Hosteling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1:

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2}, \\
\frac{1}{2} & \text { if } x_{1}=x_{2}, \\
1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2} .\end{cases} \\
& u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2}, \\
\frac{1}{2} & \text { if } x_{1}=x_{2}, \\
\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2} .\end{cases}
\end{aligned}
$$

Similarly,

Hotelling

Then the profits that accrue to firm 1 is given by the mass of consumers that are closest to firm 1:

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Similarly,

$$
u_{2}\left(x_{1}, x_{2}\right)= \begin{cases}1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ \frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$.
the other firm as possible)

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left the other firm as possible)

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for firm 1 (try to set as close to the right the other firm as possible)

Hotelling
Compute the best response functions

- Case 1: Suppose first that $x_{2}>1 / 2$. Then setting x_{1} against x_{2} yields a payoff of

$$
u_{1}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}<x_{2} \\ \frac{1}{2} & \text { if } x_{1}=x_{2} \\ 1-\frac{x_{1}+x_{2}}{2} & \text { if } x_{1}>x_{2}\end{cases}
$$

This utility function has a discontinuity at $x_{1}=x_{2}$ and jumps down to $1 / 2$ at $x_{1}=x_{2}$. There will be no best response for firm 1 (try to set as close to the left
the other firm as possible) Case 2: Suppose nestable

- Case 2: Suppose next that $x_{2}<1 / 2$. Again there will be no best response for
firm 1 (try to set as close to the right the other firm as possible)
- Case 3: Suppose next that $x_{2}=1 / 2$. Here there will be a best response for firm 1 at $1 / 2$

Hotelling

Symmetrically, we have:

$$
B R_{2}\left(x_{1}\right)= \begin{cases}\emptyset & \text { if } x_{1}>1 / 2 \\ 1 / 2 & \text { if } x_{1}=1 / 2 \\ \emptyset & \text { if } x_{1}<1 / 2\end{cases}
$$

The unique Nash equilibrium is for each firm to choose $\left(x_{1}, x_{2}\right)=(1 / 2.1 / 2$ Each
firm essentially locates in the same place

Hotelling

- Hotelling can also be done in a discreet setting
- Hotelling can be applied to a variety of situations (e.g., voting)
- But this predicts the opposite of polarization

With three candidates, predictions are quite different

- All candidates picking $\frac{1}{2}$ is no longer a Nash equilibrium
- What are the set of pure strategy equilibria here? (this is a difficult problem).

