Lecture 14

Wednesday, March 24, 2021 9:13 AM

Lecture 14: Game Theory // Nash equilibrium

Mauricio Romero

(0) (0) (2) (2) (2)

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

xamples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Evamples

(0

Mixed strategies

Consider rock/paper/scissors

| Rock | Paper | Scissors | Rock | 0,0 | -1,1 | 1,-1 | Paper | 1,-1 | 0,0 | -1,1 | Scissors | 1,1 | 1,1 | 0,0 |

► This game is entirely stochastic (ability has nothing to do with your chances of winning)

.....

Mixed strategies Consider rock/paper/scissors

Rock P

 Rock
 Paper Paper Paper
 Scissors

 Rock
 0,0
 -1,1
 1,-1

 Paper 1,-1
 0,0
 -1,1

 Scissors
 -1,1
 1,-1
 0,0

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- ► The probability of winning with every strategy is the same

(0) (8) (3

Mixed strategies

Consider rock/paper/scissors

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- ► The probability of winning with every strategy is the same
- ► Thus, people *tend* choose randomly which of the three options to play

(0) (8) (2) (2) 2

Mixed strategies

- This game is entirely stochastic (ability has nothing to do with your chances of winning)
- $\,\blacktriangleright\,$ The probability of winning with every strategy is the same
- ► Thus, people *tend* choose randomly which of the three options to glay

 ► We would like the concept of Nash equilibrium to reflect this

Mixed strategies

0:(00)

Definition
$$\mbox{A mixed strategy } \sigma_i \mbox{ is a function } \sigma_i : S_i \rightarrow [0,1] \mbox{ such that } \\ \sum_{\mathbf{s} \in S_i} \sigma_i(\mathbf{s}_i) = 1.$$

- $ightharpoonup \sigma_i(s_i)$ represents the probability with which player i plays s_i
- ▶ A pure strategy is simply a mixed strategy σ_i that plays some strategy $s_i \in S_i$ with probability one

Mixed strategies

Definition $\mbox{A mixed strategy } \sigma_i \mbox{ is a function } \sigma_i \colon S_i \to [0,1] \mbox{ such that }$ $\sum_{s_i \in S_i} \sigma_i(s_i) = 1.$

$$s_i \in S_i$$

- $ightharpoonup \sigma_i(s_i)$ represents the probability with which player i plays s_i
- ▶ A pure strategy is simply a mixed strategy σ_i that plays some strategy $s_i \in S_i$ with probability one
- \blacktriangleright We will denote the set of all mixed strategies of player i by Σ_i

Mixed strategies \blacktriangleright Given a mixed strategy profile $(\sigma_1, \sigma_2, \ldots, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

Mixed strategies

• Given a mixed strategy profile $(\sigma_1, \sigma_2, ..., \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

• $(\sigma_1, \sigma_2, ..., \sigma_n)$

$$u_1(\sigma_1, \sigma_2, \dots, \sigma_n) = \sum_{s \in S} u_1(s_1, s_2, \dots, s_n) \sigma_1(s_1) \sigma_2(s_2) \cdots \sigma_n(s_n).$$

seS For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{2}$ (i.e., $\sigma_{-i} = (0, \frac{1}{2}, \frac{1}{2}))$

Mixed strategies \blacktriangleright Given a mixed strategy profile $(\sigma_1, \sigma_2, \dots, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles

$$u_1(\sigma_1,\sigma_2,\ldots,\sigma_n) = \sum_{s \in S} u_1(s_1,s_2,\ldots,s_n)\sigma_1(s_1)\sigma_2(s_2)\cdots\sigma_n(s_n).$$

For instance, assume my opponent is playing randomizing over paper and scissors with probability ½ (i.e., σ_{-i} = (0, ½, ½))
 The expected utility of playing "rotk" is

$$E(U_l(rock,\sigma_{-l})) = -1\frac{1}{2} + 1\frac{1}{2} = 0$$
 Then the Vs T Set A

Mixed strategies

Foren a mixed strategy profile $(\sigma_1, \sigma_2, \dots, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles $u_1(\sigma_1, \sigma_2, \dots, \sigma_n) = \sum_{s \in S} u_1(s_1, s_2, \dots, s_n)\sigma_1(s_1)\sigma_2(s_2) \cdots \sigma_n(s_n)$.

$$u_1(\sigma_1, \sigma_2, ..., \sigma_n) = \sum u_1(s_1, s_2, ..., s_n)\sigma_1(s_1)\sigma_2(s_2) \cdot \cdot \cdot \sigma_n(s_n)$$

For instance, assume my opponent is playing randomizing over paper and scissors with probability ½ (i.e., σ_{-i} = (0, ½, ½))
 The expected utility of playing "rock" is

$$E(U_i(rock,\sigma_{-i})) = -1\frac{1}{2} + 1\frac{1}{2} = 0$$

Mixed strategies

Definition A (possibly mixed) strategy profile $(\sigma_1^*, \sigma_2^*, \dots, \sigma_n)^*$ is a Nash equilibrium if and only if for every i.

 $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$

for all $\sigma_i \in \Sigma_i$.

Mixed strategies

Definition (Mixed Strategy Dominance Definition A) Let σ_i, σ_i' be two mixed strategies of player i. Then $\underline{\sigma_i}$ strictly dominates σ_i' if for all mixed strategies of the opponents, σ_{-l} ,

Mixed strategies

If σ_i is better than σ_i' no matter what <u>prime strategy</u> opponents play, then σ_i is also strictly better than σ_i' no matter what <u>mixed strategies</u> opponents play

Theorem

Let σ_i and σ_i' be two mixed strategies of player i. Then σ_i strictly dominates σ_i' if and only if for all $s_{-i} \in S_{-i}$, $u(\sigma_i, s_{-i}) > u(\sigma_i', s_{-i})$.

Proof- Part 1

 $\blacktriangleright \ \, \mathsf{Since} \,\, \mathsf{S}_{-i} \subseteq \Sigma_{-i}, \, \mathsf{if} \,\, \sigma_i \,\, \mathsf{strictly} \,\, \mathsf{dominates} \,\, \sigma_i'$

Proof- Part 1

▶ Since $S_{-i} \subseteq \Sigma_{-i}$, if σ_i strictly dominates σ_i'

▶ Then for all $\mathbf{s}_{-i} \in S_{-i},$ $w(\sigma_i, \mathbf{s}_{-i}) > w_i(\sigma_i', \mathbf{s}_{-i}).$

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

Lecture 14: Game Theory // Nash equilibrium

Mixed strategies

Examples

G 2.1 0.0 P 0.0 1.2

► There are two pure strategy equilibria (G, G) and (P, P)

- ► There are two pure strategy equilibria (G, G) and (P, P)

 \blacktriangleright Let λ be the probability with which player 1 chooses G and q be the probability with which player 2 plays G

- Battle of the sexes $\blacktriangleright \ \, \text{Let } \lambda \text{ be the probability with which player } 1 \text{ chooses } G \text{ and } q \text{ be the probability with which player } 2 \text{ plays } G$
 - $u_1(\lambda, q) = 2\lambda q + (1 \lambda)(1 q).$

- Battle of the sexes

 Let \(\lambda \) be the probability with which player 1 chooses \(G \) and \(q \) be the probability with which player 2 plays \(G \)

 \[\lambda \)
 - $u_1(\lambda, q) = 2\lambda q + (1 \lambda)(1 q).$
- ► Case 1: If q > 1/3, then 2q > 2/3 > 1 q and therefore, the best response is

- Battle of the sexes

 Let \(\) be the probability with which player 1 chooses \(G \) and \(q \) be the probability with which player 2 plays \(G \)

 With which player 2 plays \(G \)
 - $u_1(\lambda, q) = 2\lambda q + (1 \lambda)(1 q).$
- ▶ Case 1: If q > 1/3, then 2q > 2/3 > 1 q and therefore, the best response is
- $\lambda=1$ **Case 2:** if q=1/3, then 2q=2/3=1-q and therefore, the best response is $\lambda\in[0,1]$

- Battle of the sexes

 ▶ Let λ be the probability with which player 1 chooses G and g be the probability with which player 2 plays G▶
 - $u_1(\lambda, q) = 2\lambda q + (1 \lambda)(1 q).$
- ▶ Case 1: If q>1/3, then 2q>2/3>1-q and therefore, the best response is $\lambda=1$
- Case 2: if q = 1/3, then 2q = 2/3 = 1 q and therefore, the best response is
- \sim Case 3: If q<1/3, then 2q<2/3<1-q and therefore the best response is $\lambda=0$

- $u_1(\lambda, q) = 2\lambda q + (1 \lambda)(1 q).$ ▶ Case 1: If q > 1/3, then 2q > 2/3 > 1 - q and therefore, the best response is

$$MZ_{1}(0_{z=}(\lambda,1-\lambda)) = h_{GVP} = 51 \lambda = 1/3$$

$$V_{1} = (\alpha,1-\alpha)$$

$$V_{2} = (\alpha,1-\alpha)$$

$$V_{3} = (\alpha,1-\alpha)$$

$$V_{4} = (\alpha,1-\alpha)$$

$$V_{5} = (\alpha,1-\alpha)$$

$$V_{7} = (\alpha,1-\alpha)$$

$$V_{7} = (\alpha,1-\alpha)$$

Vz(01,6)=1x+0(1-x)=x $V_{z}(\sigma_{1}, P) = 0.0 \times + 2(1-x) = 2-2x$

X> 2-2X

272/3

3472

51

Battle of the sexes

Let λ be the probability with which player 1 chooses G and g be the probability with which player 2 plays G

$$u_1(\lambda, q) = 2\lambda q + (1 - \lambda)(1 - q)$$

- $w_1(\lambda,q)=2\lambda q+(1-\lambda)(1-q).$ \blacktriangleright Case 1: If q>1/3, then 2q>2/3>1-q and therefore, the best response is $\lambda=1$ Case 2: If q=1/3, then 2q=2/3=1-q and therefore, the best response is $\lambda\in[0,1]$ \blacktriangleright Case 3: If q<1/3, then 2q<2/3<1-q and therefore the best response is $\lambda=0$ \bullet Thus, the best response function is given by:

$$BR_1(q) = \begin{cases} 1 & \text{if } q > 1/3 \\ [0,1] & \text{if } q = 1/3 \\ 0 & \text{if } q < 1/3. \end{cases}$$

Battle of the sexes

Similarly we can calculate the best response function for player 2 and we get:

$$BR_2(\lambda) = \begin{cases} 1 & \text{if } \lambda > 2/3 \\ [0,1] & \text{if } \lambda = 2/3 \\ 0 & \text{if } \lambda < 2/3. \end{cases}$$

 \blacktriangleright There are three points where the best response curves cross: $(1,1),(0,0,),(\frac{2}{3},\frac{1}{3})$

▶ There are three points where the best response curves cross: $(1,1),(0,0,),(\frac{2}{3},\frac{1}{3})$ ▶ First two are the pure strategy NE we had found before

Battle of the sexes

- ▶ There are three points where the best response curves cross: $(1,1),(0,0,1),(\frac{2}{3},\frac{1}{3})$ ▶ First two are the pure strategy NE we had found before ▶ Last is a strictly mixed NE: both players randomize

6>F D>,B

► Consider $\sigma_1 = (\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6})$

$$\frac{3}{1} = \frac{3}{1} = \frac{3}$$

- ► Consider $\sigma_1 = (\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6})$ $\blacksquare U(E, \sigma_1) = 10\frac{1}{3} + 4\frac{1}{4} + 2\frac{1}{4} + 4\frac{1}{6} = 5.5$ • Consider $\sigma_1 = (\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6})$ \triangleright $\mathbb{E}U(E, \sigma_1) = 10\frac{1}{3} + 4\frac{1}{4} + 2\frac{1}{4} + 4\frac{1}{6} = 5.5$ ▶ $\mathbb{E}U(F, \sigma_1) = 3\frac{1}{3} + 2\frac{1}{4} + 4\frac{1}{4} + 3\frac{1}{6} = 3$ ► Consider $\sigma_1 = (\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6})$
- $\blacksquare U(E, \sigma_1) = 10\frac{1}{3} + 4\frac{1}{4} + 2\frac{1}{4} + 4\frac{1}{6} = 5.5$ ▶ $\mathbb{E}U(F, \sigma_1) = 3\frac{1}{3} + 2\frac{1}{4} + 4\frac{1}{4} + 3\frac{1}{6} = 3$ \blacktriangleright $\mathbb{E}U(G, \sigma_1) = 4\frac{1}{3} + 6\frac{1}{4} + 8\frac{1}{4} + 4\frac{1}{6} = 5.5$
- ► Consider $\sigma_1 = (\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6})$ $\blacksquare U(E, \sigma_1) = 10\frac{1}{3} + 4\frac{1}{4} + 2\frac{1}{4} + 4\frac{1}{6} = 5.5$ $\blacksquare U(F, \sigma_1) = 3\frac{1}{3} + 2\frac{1}{4} + 4\frac{1}{4} + 3\frac{1}{6} = 3$ $ightharpoonup \mathbb{E}U(G, \sigma_1) = 4\frac{1}{3} + 6\frac{1}{4} + 8\frac{1}{4} + 4\frac{1}{6} = 5.5$ ▶ Then $BR_2(\sigma_1) = \{(\rho, 0, 1 - \rho), \rho \in [0, 1]\}$

- ► G dominates F (player 2) ▶ D dominates B (player 1)
- 25 Busaveros Oi Oi>C C Donwe en G (oi = (x,0,1-x) $\mathbb{E}\left(V_{1}(\sigma_{1}, E)\right) = 5 \times + 2(1-x) > 4 = V_{1}(4, E)$ $\mathbb{E}\left(V_{1}(\sigma_{1}, 6)\right) = \frac{3 \times 10(1-x)}{3} = V_{1}(6, 6)$
- ► Note that $\sigma_1 = (p, 0, 1-p)$ with $p > \frac{2}{3}$ dominates C► $\mathbb{E} U(\sigma_1, E) = 5p + 2(1-p) = 3p + 2$ ► $\mathbb{E} U(\sigma_1, G) = 3p + 8(1-p) = 8 5p$

5x+2-2x>4 → 3x>2 / x>23 3x+8-8x>3 → 5x/-5 / xel


```
▶ Lets find BR_1(\sigma_2 = (q, 1-q))

▶ \mathbb{E}U(A, \sigma_2) = 5q + 3(1-q) = 2q + 3

▶ \mathbb{E}U(0, \sigma_2) = 2q + 8(1-q) = 8 - 6q

▶ 8 - 6q > 2q + 3 if \frac{6}{8} > q

▶ 8 - 6q < 2q + 3 if \frac{6}{8} < q

▶ Thus

BR_1(q, 1-q) = \begin{cases} \sigma_1 = (0, 1) & \text{if } 0 \le q < \frac{6}{8} \\ \sigma_1 = (1, 0) & \text{if } \frac{6}{8} < q \le 1 \\ \sigma_1 = (p, 1-p) & \text{if } \frac{6}{8} = q \end{cases}
```

▶ Lets find $BR_2(\sigma_1 = (\rho, 1 - \rho))$

▶ Lets find $BR_0(\sigma_1=(\rho,1-\rho))$ ▶ $\mathbb{E}U(\sigma_1,E)=10\rho+4(1-\rho)=6\rho+4$

▶ Lets find $BP_0(\sigma_1=(p,1-\rho))$ ▶ $\mathbb{E}U(\sigma_1,E)=10p+4(1-\rho)=6p+4$ ▶ $\mathbb{E}U(\sigma_1,G)=4p+4(1-\rho)=4$

▶ Lets find $BR_2(\sigma_1 = (\rho, 1 - \rho))$ ▶ $EU(\sigma_1, E) = 10\rho + 4(1 - \rho) = 6\rho + 4$ ▶ $EU(\sigma_1, G) = 4\rho + 4(1 - \rho) = 4$ ▶ $6\rho + 4 > 4$ if $\rho > 0$

▶ Less find $BR_2(\sigma_1 = (p, 1 - p))$ ▶ $EU(\sigma_1, E) = 10p + 4(1 - p) = 6p + 4$ ▶ $EU(\sigma_1, G) = 4p + 4(1 - p) = 4$ ▶ 6p + 4 > 4 if p > 0▶ 6p + 4 < 4 if p < 0.

▶ Lets find $BR_2(\sigma_1 = (\rho, 1 - \rho))$ ▶ $EU(\sigma_1, E) = 10\rho + 4(1 - \rho) = 6\rho + 4$ ▶ $EU(\sigma_1, G) = 4\rho + 4(1 - \rho) = 4$ ▶ $6\rho + 4 > 4$ if $\rho > 0$ ▶ $6\rho + 4 < 4$ if $\rho > 0$ ▶ $R_2(\rho, 1 - \rho) = \begin{cases} \sigma_2 = (1, 0) & \text{if } \rho > 0 \\ \sigma_2 = (q, 1 - q) & \text{if } \rho = 0 \end{cases}$

