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Theorem (Nash's Theorem) 

Suppose that the pure strategy set S; is finite for all players i. 
always exists. 
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Proof (just the intuition) 

... Proof is very similar to genera l eq uilibrium proof 

..,_ Two parts: 

1. A Nash equi librium is a fixed point of the best response functions 

2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed 
point 

... Remember X* is a fixed point of F(X) if and onl y if F(X*) = X* 
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Proof - Part 1 

.., Let (s; , ... , s~) be a Nash equilibrium 

.., Then sj = BR;(s~_.;) for all i 

.. Let f{s1, ... , Sn) = (BR, ~ , BR2(s- 2), ... , BRn(s- n)) 
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Proof - Part 1 

.., Let (si , .. . , s~) be a Nash equilibrium 

.., Then sj = BR;(s~ . .;) for all i 

.. Let f{s1, .. . , sn) = (8R1(s-1) , BR2(s-2) , ... , BRn(s-n)) 

.. f{s; , ... , s;) = (s; , ... , s;) 

.. Therefore ~ ... , sJ is a fixed point of r 

Proof - Part 2 

Theorem (Kakutani fixed-point t heorem) 

Let r : n ---* n be a correspondence that is u~p:cp.;;e:..r ;;;se"'m-"it?.-""'==' 
c~ c/DSed and bounded} , and ~ ex =} ,i;f;::h.;a;:.s.;a.,.='=--•-;;.;;,;,;;.~ 

Proof - Part 2 

So we want to apply Kakutani 's theorem . If the game is finite and we allow mixed 
strategies then 

.. r = i:--+ i: 
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Proof - Part 2 

So we wa nt to apply Kakuta ni 's t heorem. If t he ga me is fini te and we allow mixed 
st rategies then 

~' 1,--+© / 
..,_ L is compact: It includes t he boundary (pu re strategies) and is bounded (the 

game only hL fini te set of strategies) 

Ill- L is ~ By allowing mixed strategies, we automatica lly make it convex 

~ 1(s1 , ... , s0 ) = (BR1(s- 1) , BR2 (s- 2), ... , BR0 (s_ 0 ) ) is upper semi-continous. W hy7 

• If two pure strategies are in t he best response of a player (sj , s; E BR;(s_ ;)) , then any 
mixing of those strategies is also a best response (i.e ., pa + (1 - p)a E BR;( s_; )) 

• Therefore if r(s1 , . . . , s0 ) has two images, t hose two images are connected ~ ia all the 
mixed strategies t hat connect those two images) 

... That hap pens to be t he defini t ion of upper semi -cont inous 
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know what others did before playing 

..,_ Reminder: A (pure) strategy is a complete contingent plan of act ion at every 
information set 

..,_ The set of Nash eq uili bria of the extensive form ga me is simply t he set of a ll Nash 
equilibria of the normal fo rm representation of t he game 

..,_ Some of t he eq uilib ria do not make much sense intuit ive ly 



Two Nash eq ui libria: (x,f) y (e,a). 
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X 0,2 0,2 

e -3,-1 2,1 
0,2 0,2 
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., A natural way to make sure players are optimizing in each node is to solve the 
game via backwards induction 

..,_ This amounts to starting from t he end of the game, and work t he way backwards 
by eliminating non-optimal strategies 

Theorem (Zermelo) 

In every finite game where every information set has a single node i.e., complete 
information), has an Nashe uilibriu be derived via ackwar n. If 
the payouts to players are different in alf terminal nodes, then the Nash equilibrium is 
unique. 

Theorem(~ 
In any finite two-person game of perfect information in which the players move 
alternatingly and in which chance does not affect the decision making process, if the 
game cannot end in a draw, then one of the two players must have a winning strategy 
(i.e. force a win). 
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C p 

c.c 3,3 0,2 
C,P 4,1 0,2 
P,C 1,0 1,0 
P,P 1,0 1,0 

~ Nash eq uilibria are {(P, P) , P) and {(P, C) , P} 

.,. But if the game repeats 1,000 times it would be imposs ible to analyze 

C p 

C,C 3,3 0,2 
C,P 4,1 0,2 
P,C 1,0 1,0 
P,P 1,0 1,0 

~ Nash equ ilibria are {(P, P) , P) and {(P, C), P} 

Ill- But if the game repeats 1,000 times it wou ld be impossible to analyze 

., But by backward induction , the solut ion is to play P in each period 

Consider the followi ng game 

A 2~ 3, 3 
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I ~ 4, l 
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Ill- Can 't be solved by backwards induction 



., Can't be solved by backwards induction 

., Thus, we need something else 

., Can't be solved by backwards induct ion 

., Thus, we need something else 

~ First, we need to defined 8 
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A sub-game, of a game in extensive form, is a sub-tree such that 

., It starts in a single node 

., If contains a node, it contains all subsequent nodes 

., If it contains a node in an information set, it contains all nodes in the information 
set 

Definition 
A subgame of an extensive form game is the set of all actions and nodes that follow a 
particular node that is not included in an information set wi th another distinct node 



By definition , the original game is a subgame 

(-3,- 1) Si 
(2,1) 

Centipede Game 

--~s, 
{3,3) 

(1,0) {0,2) 

Since in some games (where multiple nodes are in the same information set) we can't 
fo rma lly choose how people are optimizing, we extend the notion of backwards 
induction to subgames 

Definition (S_ubgame perfect Nash equilibria) 

A pure strategy profile is a Subgame perfect Nash equi libria (SPNE) if and only if it 
involves t he play of a NE in every subgame of the game. 
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Since in some games (where mu ltiple nodes are in the same information set) we can't 
forma lly choose how people are optimizing, we extend the notion of backwards 
induction to subgames 

Definition (Subgame perfect Nash equilibria) 

A pure strategy profi le is a Subgame perfect Nash equi libria (SPNE) if and only if it 
involves t he play of a NE in every subgame of the game. 

Remark 
Every SPNE is a NE 

Remark 
As in normal form games, mixed strategy SPNE can be defined but this is a bit 
technical. Thus, we will not worry about it for the purposes of the course. 
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~ The game has 3 NE: (LB,X), (MA,Y),(MB,Y) 

~ The subgame has a single NE: (B,X) 

~ The SPNE is (LB,X) 


