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• I:~ By allowing mixed strategies, we automat ically make it~ 

" r(s1, ... , sn) = {8R1(s_i), 8R2(s- 2), ... , BRn(s- n)) is upper semi-continous. Why? 

" lftwopure strategi"" a,einthe b""t'""f>O<''"'Of a pjayer(s;, <{ E BR;(<-;) ),then any 
mi~ing of those st rategies is also a best res~nse (i .e , ,x, + (l - p)v E BR;(<- ,)) 

• The,efore if r(,1 ..... , 0 ) has two images, those rwoimagesaro connected (via all the 
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" That happenstobethedefi nitionofuppersemi-cont inous 
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Theorem (Ze,melo) 

In ev,>ry finite game where every information set has a single node (i. e., complete c~ll M:>0 ~ 
informat,onJ, has an Nash eqoil•kd11_m char q ~ Pe derived via b<>ckwards ia@.cI'.on. If L,t,t/CC-tO~ f-lAetA 
thep;iyoutstoplayersaredifferentmalltermmalnodes. then the Na~ A-'TlZ.4:) l::i 
un~ Viv EN. 

Theorem (Zermelo 11) 

In any finite tw,:,..person game of perfect information in which the players mov,> 
a/ternatingly and in which chance does not ;,ffect the decision m;,king proce55, if the 
game cannot end in ;, draw, then one of the two players must have a winning str;,tegy 
(i.e. force;, win) 
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• Nashequilibriaare ~ d {'-.P_, t.--C..,----77"---. 

C,C 3,3 
C,P 4,1 
P,C 1.0 
P,P 1,0 
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• But by backward induction , the solution is to play Pin each period 

Consider the following game 

rv---
, ,__,,__--·I ' ·<·~,'1 I .. ..>---' ., 

·~ ~. 

" Can't be solved by backwards induct io n 

" Can' t be solved by Wckwardsinduction 

• Thus, we need something else 

• Can' t be solved by b.ickwardsinduct ion 

" Thus,weneedsomethingelse 



A sub-game, of a game in e~tensive form, is a sub-tree such that 

0 '"""' '" "'"'''""'' 
© lfro""'"''"od,.l<roaul"''"'"""'"'"'"''" 

r,~ .. lfitconuinsanodein an inf D set ormationset , itcontainsallnodesintheinformation 

Definition 
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Remark 
As in norm;,/ form g;,mes. mixed strategy SPNE can be defined but this is;;, bit 
technical. Thus, wewillnotworryaboutit forthepurposesofthecourse. 

• The game has 3 NE: (LB.X). (MA.Y).(MB.Y) 

• Thesubgame has a single NE: (B,X) 

• TheSPNE is(LB,X) 


