| Lecture 16 Thursday, April 22, 2021 2:01 PM                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|
| Ective16                                                                                                                         |
|                                                                                                                                  |
| Lecture 16: Applications of Subgame Perfect Nash Equilibrium                                                                     |
| Mauricio Romero                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| Lecture 16: Applications of Subgame Perfect Nash Equilibrium                                                                     |
|                                                                                                                                  |
| Ultimatum Game                                                                                                                   |
| Alternating offers                                                                                                               |
| Stackelberg Competition                                                                                                          |
|                                                                                                                                  |
| Lecture 16: Applications of Subgame Perfect Nash Equilibrium                                                                     |
| Ultimatum Game                                                                                                                   |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| 10.10/1121212 2 2                                                                                                                |
|                                                                                                                                  |
| <ol> <li>Player 1 makes a proposal (x.1000 – x) of how to split 100 besos among<br/>(100,900),, (800,200), (900,100)</li> </ol>  |
| Player 2 accepts or rejects the proposal                                                                                         |
| 3. If player 2 rejects both obtain 0. If 2 accepts, then the payoffs or the two players are determined by $(\kappa,1000-\kappa)$ |
| are determined by $(x, 1000 - x)$                                                                                                |
| (0)(0)(2)(2)(2)(3)                                                                                                               |
|                                                                                                                                  |
|                                                                                                                                  |
| ► In any pure strategy SPNE, player 2 accepts all offers                                                                         |
|                                                                                                                                  |
|                                                                                                                                  |
| 1811(81121121 2 4                                                                                                                |
|                                                                                                                                  |
| ► In any pure stratery SPNE, player 2 accepts all offers                                                                         |
| in any pure strategy SMNE, player 2 accepts all offers                                                                           |

► In any SPNE, player 1 makes the proposal (900, 100)

2: Y=1,000 2: X=1000 2: X=1000

| ► This is far from what happens in reality                                                                                                                                                                                 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                            |   |
| ➤ This is far from what happens in reality  ➤ When extreme offers like (900,100) are made, player 2 rejects in many cases                                                                                                  |   |
|                                                                                                                                                                                                                            |   |
| ➤ This is far from what happens in reality  ➤ When extreme offers like (900, 100) are made, player 2 rejects in many cases  ➤ Player 2 may care about inequality or positive utility associated with "punishment" aversion | X |
| political averages                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                            |   |
| 10.18.12.12.12.040                                                                                                                                                                                                         |   |
| Lecture 16: Applications of Subgame Perfect Nash Equilibrium                                                                                                                                                               |   |
|                                                                                                                                                                                                                            |   |
| Ultimatum Game                                                                                                                                                                                                             |   |
| Alternating offers                                                                                                                                                                                                         |   |
| Stackelberg Competition                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                            |   |
| (D) (Ø) (E) (E) E E E                                                                                                                                                                                                      |   |
| Lecture 16: Applications of Subgame Perfect Nash Equilibrium                                                                                                                                                               |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
| Alternating offers                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
| 101/051/21/21/21/21/21/21/21/21/21/21/21/21/21                                                                                                                                                                             |   |
| $\blacktriangleright$ Two players are deciding how to split a pie of size $1$                                                                                                                                              |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
| 10.10.12.12. 2 940                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                            |   |



| ► Two players are deciding how to split a pie of size 1                                                                  |                             |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| ► The players would rather get an agreement today than ton factor)                                                       | norrow (i.e., discount      |
|                                                                                                                          | 10.00.12.12.2.2.2           |
| $\blacktriangleright \   Player \ 1 \ makes \ an \ offer \ \theta_1$                                                     |                             |
|                                                                                                                          |                             |
|                                                                                                                          |                             |
|                                                                                                                          | 10.10.12.12.2.2.2.0         |
| $\blacktriangleright$ Player 1 makes an offer $\theta_1$                                                                 |                             |
| ► Player 2 accepts or rejects the proposal                                                                               |                             |
|                                                                                                                          |                             |
|                                                                                                                          | V0.1001121121 2 01          |
| $\blacktriangleright$ Player 1 makes an offer $\theta_1$                                                                 |                             |
| ▶ Player 2 accepts or rejects the proposal ▶ If player 2 rejects, player 2 makes an offer θ₂                             |                             |
|                                                                                                                          |                             |
|                                                                                                                          | CO. (8. (2. (2. 2. 2. 3. 0) |
| $\blacktriangleright$ Player 1 makes an offer $\theta_1$                                                                 |                             |
| ► Player 2 accepts or rejects the proposal                                                                               |                             |
| <ul> <li>If player 2 rejects, player 2 makes an offer θ₂</li> <li>If player 1 accepts or rejects the proposal</li> </ul> |                             |
|                                                                                                                          |                             |
|                                                                                                                          |                             |
|                                                                                                                          | (0) (0) (2) (2) 2 0         |
| ▶ Player 1 makes an offer $\theta_1$                                                                                     |                             |
| ► Player 2 accepts or rejects the proposal                                                                               |                             |
| ▶ If player 2 rejects, player 2 makes an offer θ <sub>2</sub>                                                            |                             |
| ► If player 1 accepts or rejects the proposal                                                                            |                             |
| ▶ If player 1 rejects, player 1 makes an offer $\theta_3$                                                                |                             |





 $\blacktriangleright$  In the game with discounting, the total value of the pie is 1 in the first period,  $\delta$  in the second, and so forth

Assume Player 1 makes the last offer

- ► In period T, if it is reached, Player 1 would offer 0 to Player 2
- ► Player 2 would accept (indifferent between accepting and rejecting)

▶ In the game with discounting, the total value of the pie is 1 in the first period,  $\delta$  in the second, and so forth

► Assume Player 1 makes the last offer

► In period T, if it is reached, Player 1 would offer 0 to Player 2

▶ Player 2 would accept (indifferent between accepting and rejecting)

▶ In period (T-1), Player 2 could offer Smith  $\delta$ , keeping  $(1-\delta)$  for himself

► In the game with discounting, the total value of the pie is 1 in the first period, δ

▶ In period 7 if it is reached, Player 1 would offer 0 to Player 2

In period (T-1) Player 2 could offer  $\delta$ , keeping  $(1-\delta)$  for himself

► Player 1 would accept (indifferent between accepting and rejecting) since the whole ple in the next period is worth δ

T-V 5, -V (1,0) ST (T-1) +52-D (x,1-x) ST-1

▶ In period (T-2), Player 1 would offer Player 2  $\delta(1-\delta)$ , keeping  $(1-\delta(1-\delta))$ for bimodif

- In period (T − 2), Player 1 would offer Player 2 δ(1 − δ), keeping (1 − δ(1 − δ)) for himself
- In period (T = 3), Player 2 would offer Player 1  $\delta[1 \delta(1 \delta)]$ , keeping  $(1 \delta[1 \delta(1 \delta)])$  for himself

- ▶ In period (T-2), Player 1 would offer Player 2  $\delta(1-\delta)$ , keeping  $(1-\delta(1-\delta))$  for kinnelf
- ▶ Player 2 would accept since he can earn  $(1 \delta)$  in the next period, which is worth  $\delta(1 \delta)$  today

- ▶ In period (T-2), Player 1 would offer Player 2  $\delta(1-\delta)$ , keeping  $(1-\delta(1-\delta))$  for himself
- Player 2 would accept since he can earn  $(1 \delta)$  in the next period, which is worth  $\delta(1 \delta)$  today

- ▶ In period (T-2), Player 1 would offer Player 2  $\delta(1-\delta)$ , keeping  $(1-\delta(1-\delta))$  for himself
- ▶ Player 2 would accept since he can earn  $(1 \delta)$  in the next period, which is worth  $\delta(1 \delta)$  today

(T-1) \$52 - (X,1-X) & J. A SI ST X 7.87 X>S Lox=& (8,1-5) & T-1= (5, (1-8) & T-1)

(T-Z) -> 5, -> (1-x, x) 5, -2 5a A SI X 8 7- 7 > (1-8) 8 7-1

X7 (1-8)8 X= (1-8) &

 $(1-(1-8)8, (-8)8)5^{t-2}$ 

(7-3) -3 (x, 1-x) (x, 1-x)

5, A s, X85-37 (1-(1-8)8)878

X> (1-(1-8)8)8

X: (1-(1-8)8)8

7-5 LA

► In equilibrium, the very first offer would be accepted, since it is chosen precisely so that the other player can do no better by waiting TE1 Table 1 shows the progression of Player 1's shares when  $\delta=0.9$ . Round 1's 2's Total Who share share value offers? 1=4  $\delta^{T-2}$  2 Z T-1 δ 1-δ 8,762  $\delta$  7 1 0  $\delta$ <sup>T-1</sup> 1 ▶ If T = 3 (i.e, 1 offers, 2 offers, 1 offers) ightharpoonup If T=3 (i.e, 1 offers, 2 offers, 1 offers)  $\blacktriangleright$  One offers  $\delta(1-\delta)$ , 2 accepts in period 1 ▶ Player 1 always does a little better when he makes the offer than when Player 2  $\blacktriangleright\,$  Player 1 always does a little better when he makes the offer than when Player 2 ► If we consider just the class of periods in which Player 1 makes the offer, Player 1's share falls Lecture 16: Applications of Subgame Perfect Nash Equilibrium Stackelberg Competition

$$[(1-(1-8)8)8, 1-(1-(1-8)8)8]$$



▶ Let us write down the normal form representation of this game.



101181121121 2 4

- ► Let us write down the normal form representation of this game.
- $\,\blacktriangleright\,$  A pure strategy for firm 1 is just a choice of  $q_1\geq 0$

- ► Let us write down the normal form representation of this game.
- $\blacktriangleright$  A pure strategy for firm 1 is just a choice of  $q_1 \geq 0$
- $\blacktriangleright$  A strategy for firm 2 specifies what it does after every choice of  $q_1$

01 (81 (21 (2) 2 0

- ▶ Let us write down the normal form representation of this game.
- $\blacktriangleright$  A pure strategy for firm 1 is just a choice of  $q_1 \geq 0$
- $\blacktriangleright$  A strategy for firm 2 specifies what it does after every choice of  $q_1$
- Firm 2's strategy is a function  $q_2(q_1)$  which specifies exactly what firm 2 does if  $q_1$  is the chosen strategy of player 1

The utility functions for firm i when firm 1 chooses  $q_1$  and firm 2 chooses the strategy (or function)  $q_2(\cdot)$  is given by:

$$\begin{split} \pi_1(q_1, q_2(\cdot)) &= P(q_1 + \overbrace{p_2(q_1)} q_1 - c_1(q_1) \\ \pi_2(q_1, q_2(\cdot)) &= P(q_1 + q_2(q_1))q_2(q_1) - c_2(q_2(q_1)) \end{split}$$

▶ There are many Nash equilibria of this game which are a bit counterintuitive



 $P(q_1 + q_2) = A - q_1 - q_2.$ 

- ► Consider the following specific game with demand function given by:

 $P(q_1 + q_2) = A - q_1 - q_2.$ 

► Let the marginal costs of both firms be zero

- ▶ There are many Nash equilibria of this game which are a bit counterintuitive
- ► Consider the following specific game with demand function given by:

 $P(q_1 + q_2) = A - q_1 - q_2.$ 

- ► Let the marginal costs of both firms be zero
- ► Then the normal form simplifies:
  - $\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

► What is an example of a Nash equilibrium of this game?

P=1-9-92 ► What is an example of a Nash equilibrium of this game?



- ▶ What is an example of a Nash equilibrium of this game?
- ▶ Let  $\alpha \in [0, A)$  and consider the following strategy profile:

 $q_1^* = \alpha, q_2^*(q_1) = \begin{cases} A & \text{if } q_1 \neq \alpha, \\ \frac{A-\alpha}{2} & \text{if } q_1 = \alpha. \end{cases}$ 

► Let us check that indeed this constitutes a Nash equilibrium

► First we check the best response of player 1



Ectora Z

- ▶ First we check the best response of player 1
- $\blacktriangleright$  If player 2 plays  $q_2^*,$  then player 1's utility function is given by:

$$u_1(q_1,q_2^*(\cdot)) = \begin{cases} \left(A - \alpha - \left(\frac{A - \alpha}{2}\right)\right)\alpha > 0 & \text{if } q_1 = \alpha \\ -q_1^2 \le 0 & \text{if } q_1 \neq \alpha. \end{cases}$$

- ▶ First we check the best response of player 1
- $\blacktriangleright$  If player 2 plays  $q_2^*,$  then player 1's utility function is given by:

$$u_1(q_1, q_2^*(\cdot)) = \begin{cases} \left(A - \alpha - \left(\frac{A-\alpha}{2}\right)\right) \alpha > 0 & \text{if } q_1 = \alpha \\ -q_1^2 \le 0 & \text{if } q_1 \ne \alpha. \end{cases}$$

 $\max_{q_1 \ge 0} u_1(q_1, q_2^*(\cdot))$ 

is solved at  $q_1^* = \alpha$ 

- First we check the best response of player 1
- $\blacktriangleright$  If player 2 plays  $q_2^4$ , then player 1's utility function is given by:

$$u_1(q_1,q_2^*(\cdot)) = \begin{cases} \left(A - \alpha - \left(\frac{A - \alpha}{2}\right)\right)\alpha > 0 & \text{if } q_1 = \alpha \\ -q_1^2 \le 0 & \text{if } q_1 \ne \alpha. \end{cases}$$

 $\max_{q_1 \geq 0} v_1(q_1, q_2^*(\cdot))$ 

is solved at  $q_1^* = \alpha$ 

► Firm 1 is best responding to player 2's strategy.

 $\blacktriangleright$  Suppose that firm 1 plays the strategy  $q_1^*$ . Is firm 2 best responding?

- ▶ Suppose that firm 1 plays the strategy q<sub>1</sub>\*. Is firm 2 best responding?
  ▶ Firm 2's utility function is given by:
- $v_2(q_1^*, q_2(\cdot)) = (A \alpha q_2(\alpha))q_2(\alpha).$

- ▶ Suppose that firm 1 plays the strategy q<sub>1</sub>\*. Is firm 2 best responding?
  ▶ Firm 2's utility function is given by:

 $v_2(q_1^*, q_2(\cdot)) = (A - \alpha - q_2(\alpha))q_2(\alpha).$ 

 $\blacktriangleright$  Thus, firm 2 wants to choose the optimal strategy  $q_2(\cdot)$  that maximizes the following utility:

 $\max_{q_2(\cdot)} (A - \alpha - q_2(\alpha))q_2(\alpha)$ 

- $\blacktriangleright$  Suppose that firm 1 plays the strategy  $q_1^*$ . Is firm 2 best responding?
- Firm 2's utility function is given by:

$$v_2(q_1^*, q_2(\cdot)) = (A - \alpha - q_2(\alpha))q_2(\alpha).$$

▶ Thus, firm 2 wants to choose the optimal strategy  $q_2(\cdot)$  that maximizes the following utility:  $\max_{\alpha(\cdot)} (A - \alpha - q_2(\alpha)) q_2(\alpha)$ 

$$\max(A - \alpha - q_2(\alpha))q_2(\alpha)$$

▶ By the first order condition, we know that

$$q_2(\alpha) = \frac{A - \alpha}{2}$$
.

- ▶ Suppose that firm 1 plays the strategy q<sub>1</sub>\*. Is firm 2 best responding?
  ▶ Firm 2's utility function is given by:

$$v_2(q_1^*, q_2(\cdot)) = (A - \alpha - q_2(\alpha))q_2(\alpha).$$

▶ Thus, firm 2 wants to choose the optimal strategy  $q_2(\cdot)$  that maximizes the following utility:  $\max_{\alpha(\cdot)} (A - \alpha - q_2(\alpha)) q_2(\alpha)$ 

$$\max(A - \alpha - q_2(\alpha))q_2$$

▶ By the first order condition, we know that

$$q_2(\alpha) = \frac{A - \alpha}{2}$$
.

 $\blacktriangleright$  The utility function of firm 2 does not depend at all on what it chooses for  $q_2^*(q_1)$  when  $q_1 \neq \alpha$ 

 $\blacktriangleright$  Suppose that firm 1 plays the strategy  $q_1^*.$  Is firm 2 best responding?

Firm 2's utility function is given by:

$$u_2(q_1^*, q_2(\cdot)) = (A - \alpha - q_2(\alpha))q_2(\alpha).$$

▶ Thus, firm 2 wants to choose the optimal strategy  $q_2(\cdot)$  that maximizes the following utility:  $\max_{\alpha(\cdot)} (A - \alpha - q_2(\alpha)) q_2(\alpha)$ 

$$\max_{\alpha} (A - \alpha - q_2(\alpha))q_2(\alpha)$$

▶ By the first order condition, we know that

$$q_2(\alpha) = \frac{A - \alpha}{2}$$
.

- $\blacktriangleright$  The utility function of firm 2 does not depend at all on what it chooses for  $q_2^*(q_1)$  when  $q_1 \neq \alpha$
- ► In particular, q<sub>2</sub>\* is a best response for firm 2

► The above observation allows us to conclude that there are many Nash equilibria of this game

- The above observation allows us to conclude that there are many Nash equilibria of this game
- ► In fact there are many more than the ones above

- ► The above observation allows us to conclude that there are many Nash equilibria of this game
- In fact there are many more than the ones above
- ► The Nash equilibria highlighted above all lead to different predictions

- ► The above observation allows us to conclude that there are many Nash equilibria of this game ► In fact there are many more than the ones above ► The Nash equilibria highlighted above all lead to different predictions ► The above observation allows us to conclude that there are many Nash equilibria of this game ▶ In fact there are many more than the ones above ► The Nash equilibria highlighted above all lead to different predictions  $\blacktriangleright$  The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets the price  $\alpha$  and firm 2 sets the price  $(A-\alpha)/2$ . In particular, in the Nash equilibrium corresponding to  $\alpha=0$ , the equilibrium outcome is for firm 1 to choose a quantity of 0 and firm 2 setting a price of A/2► The above observation allows us to conclude that there are many Nash equilibria of this game ▶ In fact there are many more than the ones above ► The Nash equilibria highlighted above all lead to different predictions ▶ The equilibrium outcome of the above Nash equilibrium above is that firm 1 sets the price  $\alpha$  and firm 2 sets the price  $(A-\alpha)/2$ . ightharpoonup In particular, in the Nash equilibrium corresponding to lpha=0, the equilibrium outcome is for firm 1 to choose a quantity of 0 and firm 2 setting a price of A/2► This would be the same outcome if firm 2 were the monopolist in this market  $\blacktriangleright$  Consider the equilibrium in which  $\alpha=0$  $\blacktriangleright$  Consider the equilibrium in which  $\alpha=0$ ► This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- ➤ Consider the equilibrium in which α = 0

  ➤ This equilibrium is highly counterintative because firm 2 obtains monopoly profits

  ➤ The reason is that essentially firm 2 is playing a strategy that involves non-credible threats

- $\,\blacktriangleright\,$  Consider the equilibrium in which  $\alpha=0$ ▶ This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits ► The reason is that essentially firm 2 is playing a strategy that involves non-credible threats  $\,\blacktriangleright\,$  Firm 2 is threatening to overproduce if firm 1 produces anything at all  $\blacktriangleright$  Consider the equilibrium in which  $\alpha=0$ ▶ This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits ► The reason is that essentially firm 2 is playing a strategy that involves non-credible threats

- $\,\blacktriangleright\,$  Firm 2 is threatening to overproduce if firm 1 produces anything at all
- $\blacktriangleright$  As a result, the best that firm 1 can do is to produce nothing

- ightharpoonup Consider the equilibrium in which  $\alpha=0$
- ▶ This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- ► The reason is that essentially firm 2 is playing a strategy that involves non-credible threats
- ▶ Firm 2 is threatening to overproduce if firm 1 produces anything at all
- $\,\blacktriangleright\,$  As a result, the best that firm 1 can do is to produce nothing
- If firm 1 were to hypothetically choose q₁ > 0, then firm 2 would obtain negative profits if it indeed follows through with q₂\*(q₁).

▶ Many Nash equilibria are counterintuitive in the Stackelberg game

- ► Many Nash equilibria are counterintuitive in the Stackelberg game
- ► To eliminate such counterintuitive equilibria, we focus instead on SPNE instead of NE

- Many Nash equilibria are counterintuitive in the Stackelberg game
- To eliminate such counterintuitive equilibria, we focus instead on SPNE instead of NE
- ▶ Lets continue with the setting in which marginal costs are zero and the demand function is given by A − q1 − q2

We always start with the smallest/last subgames which correspond to the decisions of firm 2 after firm 1's choice of q<sub>1</sub> has been made



- ▶ We always start with the smallest/last subgames which correspond to the decisions of firm 2 after firm 1's choice of q₁ has been made
- ▶ The utility function of firm 2 is given by:  $\nu_2(q_1,q_2(\cdot)) = (A-q_1-q_2(q_1))q_2(q_1).$

..........

- We always start with the smallest/last subgames which correspond to the
  decisions of firm 2 after firm 1's choice of g<sub>1</sub> has been made
- ► The utility function of firm 2 is given by:

 $u_2(q_1, q_2(\cdot)) = (A - q_1 - q_2(q_1))q_2(q_1).$ 

So, player 2 solves

 $\max_{q_2(\cdot)} (A - q_1 - q_2(q_1))q_2(q_1).$ 

01-151-121-121-2-0

► Case 1: q<sub>1</sub> > A

1 (8) (2) (3)

- ▶ Case 1: q<sub>1</sub> > A
- In this case, the best response of firm 2 is to set a quantity  $q_2^*(q_1)=0$  since producing at all gives negative profits.

(0) (0) (2) (2) (2) (3)

- ▶ Case 1: q1 > A
- In this case, the best response of firm 2 is to set a quantity  $q_2^*(q_1)=0$  since producing at all gives negative profits.
- Case 2: q<sub>1</sub> ≤ A

-0--0--2--2--2-05

- ▶ Case 1: q1 > A
- ightharpoonup In this case, the best response of firm 2 is to set a quantity  $q_2^*(q_1)=0$  since producing at all gives negative profits.
- ► In this case, the first order condition implies:

$$q_2^*(q_1) = \frac{A - q_1}{2}$$
.

1011812121212

$$\frac{|\vec{l}|_{z} = (A - 4_{1} - 4_{2}) 4_{2}}{3\vec{l}|_{z}} = A - q_{1} - 2q_{2} = 0$$

$$q_{2}(q_{1}) = q_{2} = A - q_{1}$$

T=1  $\pi_1 = (A-q_1-q_2)q_1$   $\pi_2 = (A-q_1-q_2)q_1$   $\pi_3 = (A-q_1-q_2)q_1$   $\pi_4 = (A-q_1-q_2)q_1$ 

A=qx Z=qx

FERRICATOR FPS = (41 = A / 2(41) = Z)

E, player 2 must play the following strategy:  $q_{2}(q_{1}) = \begin{cases} \frac{d-q_{2}}{2} & \text{if } q_{1} > A \end{cases}$  SuB - Sue 60S

ESTITATEGIA DE EQ

 $\label{eq:local_problem} \begin{array}{l} \blacksquare \text{ Then player 1's utility function given that player 2 plays } q_2^* \text{ is given by:} \\ \\ u_1(q_1,q_2^*(\cdot)) = q_1(A-q_1-q_2^*(q_1)) = \begin{cases} q_1(A-q_1) & \text{if } q_1>A,\\ q_1\frac{A-q_1}{2} & \text{if } q_1\leq A. \end{cases}$ 

10.10.12.12. 2

- $\begin{tabular}{ll} \hline \textbf{F Then player 1's utility function given that player 2 plays $q_2^*$ is given by: \\ \hline $u_1(q_1,q_2^*(\cdot))=q_1(A-q_1-q_2^*(q_1))=\begin{cases} q_1(A-q_1) & \text{if $q_1>A$,}\\ q_1^*,q_2^{-20} & \text{if $q_1\leq A$.} \end{cases}$
- $\blacktriangleright$  Thus, firm 1 maximizes  $\max_{q_1} u_1(q_1,q_2^*(\cdot))$

- $\begin{tabular}{ll} \hline \textbf{F} & Then player 1's utility function given that player 2 plays $q_2^*$ is given by: \\ & u_1(q_1,q_2^*(\cdot)) = q_1(A-q_1-q_2^*(q_1)) = \begin{cases} q_1(A-q_1) & \text{if $q_1 > A$,} \\ q_1 \frac{A-q_1}{2} & \text{if $q_1 \leq A$.} \end{cases}$
- ► Thus, firm 1 maximizes max<sub>q1</sub> v<sub>1</sub>(q<sub>1</sub>, q<sub>2</sub>\*(·))
- $\blacktriangleright$  Firm 1 will never choose  $q_1 > A$  since then it obtains negative profits

\*D\*(Ø\*\*(\*\*\*)

- $\label{eq:local_problem} \begin{array}{l} \text{ Then player 1's utility function given that player 2 plays } q_2^2 \text{ is given by:} \\ u_1(q_1,q_2^2(\cdot)) = q_1(A-q_1-q_2^2(q_1)) = \begin{cases} q_1(A-q_1) & \text{if } q_1>A,\\ q_1\frac{A-q_1}{2} & \text{if } q_1\leq A. \end{cases}$
- ▶ Thus, firm 1 maximizes  $\max_{q_1} u_1(q_1, q_2^*(\cdot))$
- ightharpoonup Firm 1 will never choose  $q_1>A$  since then it obtains negative profits
- ► Thus, firm 1 maximizes

 $\max_{q_1 \in [0,A]} q_1 \frac{A - q_1}{2}.$ 

▶ The first order condition for this problem is given by:  $q_1^* = \frac{A}{2}$ 

- $\blacktriangleright$  The first order condition for this problem is given by:  $q_1^* = \frac{A}{2}$
- ▶ The SPNE of the Stackelberg game is given by:

92 EN EQUILIBRIO = A

NO CS LA ESTIZATEGIA

 $q_2(q_1) = \frac{A}{q}$ 

 $\frac{\partial}{\partial z} = \left( \frac{1}{4} - \frac{A}{2}, \frac{1}{4} - \frac{A}{4} \right) = \frac{A}{4}$ 

3-110

 $\Pi_1 = \left(A - q_1 - \frac{A}{u}\right)q_1$ 

DITI = A - Zq1 - A = C

SA 70,

► The first order condition for this problem is given by:

$$q_1^* = \frac{A}{2}$$

► The SPNE of the Stackelberg game is given by:

$$\left(q_1^* = \frac{A}{2}, q_2^*(q_1) = \frac{A - q_1}{2}\right)$$

101101121121 2 0

 $\,\blacktriangleright\,$  The first order condition for this problem is given by:

$$q_1^* = \frac{A}{2}$$

$$\left(q_1^* = \frac{A}{2}, q_2^*(q_1) = \frac{A - q_1}{2}\right)$$

The equilibrium outcome is for firm 1 to choose A/2 and firm 2 to choose A

4 -15-15-16-14

 $\,\blacktriangleright\,$  The Cournot game was one in which all firms chose quantities simultaneously

101-121-121-2

- ► The Cournot game was one in which all firms chose quantities simultaneously
- ▶ In that game, since there is only one subgame, SPNE was the same as the set of NE

- ► The Cournot game was one in which all firms chose quantities simultaneously
- ► In that game, since there is only one subgame, SPNE was the same as the set of NF
- ► Lets solve for the set of SPNE (which is the same as NE) in the Cournot game with the same demand function and same costs

-0--8--2--2--2-050

- $\blacktriangleright$  The Cournot game was one in which all firms chose quantities simultaneously
- ► In that game, since there is only one subgame, SPNE was the same as the set of NE
- ► Lets solve for the set of SPNE (which is the same as NE) in the Cournot game with the same demand function and same costs
- In this case, (q<sub>1</sub><sup>\*</sup>, q<sub>2</sub><sup>\*</sup>) is a NE if and only if

 $q_1^* \in BR_1(q_2^*), q_2^* \in BR_2(q_1^*).$ 

.0. .0. .2. .2. 2 0

3A = 291 3A = 291 2 2

| For $q_1^* \in BR_1(q_2^*)$ , we need $q_1^*$ to solve the following maximization problem:<br>$\max(A - q_1 - q_2^*)q_1$        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\max_{q_1\geq 0}(A-q_1-q_2^*)q_1.$                                                                                             |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
| 10.10.12.12. 2 94                                                                                                               |  |  |
| or $q_1^* \in BR_1(q_2^*)$ , we need $q_1^*$ to solve the following maximization problem: $\max_{q_1 \geq 0} (A-q_1-q_2^*)q_1.$ |  |  |
| the FOC are beautiful.                                                                                                          |  |  |
| $q_1^*=rac{A-q_2^*}{2}.$                                                                                                       |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
| 101101121121 2 04                                                                                                               |  |  |
| $\in BR_1(q_2^*)$ , we need $q_1^*$ to solve the following maximization problem:                                                |  |  |
| $\max_{\mathbf{q}_1 \geq 0} (A - q_1 - \mathbf{q}_2^*) q_1.$                                                                    |  |  |
| the FOC, we have: $q_1^* = \frac{A - q_2^*}{2}, \label{eq:q1}$                                                                  |  |  |
|                                                                                                                                 |  |  |
| larly for $q_2^* \in BR_2(q_1^*),$ $q_2^* = \frac{A - q_1^*}{2}.$                                                               |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
| $BR_1(q_2^*)$ , we need $q_1^*$ to solve the following maximization problem:                                                    |  |  |
| $\max_{\mathbf{q}_1 \geq 0} (A - q_1 - q_2^*) q_1.$                                                                             |  |  |
| the FOC, we have: $q_1^* = \frac{A - q_2^*}{2}. \label{eq:q1}$                                                                  |  |  |
| arly for $q_2^* \in BR_2(q_1^*)$ , $q_2^* = \frac{A-q_1^*}{2}.$                                                                 |  |  |
| esult, solving these two equations, we get:                                                                                     |  |  |
| $q_1^* = q_2^* = \frac{A}{3}.$                                                                                                  |  |  |
| 1011/01/03/03/03/03/03/03/03/03/03/03/03/03/03/                                                                                 |  |  |
|                                                                                                                                 |  |  |
| ournot game, note that firms' pasself                                                                                           |  |  |
| $\pi_1^{c} = \frac{A^2}{9}, \pi_2^{c} = \frac{A^2}{9}.$                                                                         |  |  |
| ady saw, this was not rates. The card firm is getting a payoff that<br>less than 1/2 of the monopoly profits.                   |  |  |
|                                                                                                                                 |  |  |
| 101101121121 2 04                                                                                                               |  |  |
|                                                                                                                                 |  |  |
| e Stackelberg competition game, the total quantity supplied is $\frac{3}{4}A$                                                   |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
| (B) (Ø) (\$1.81 \$ 9A)                                                                                                          |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |

- $\blacktriangleright$  In the Stackelberg competition game, the total quantity supplied is  $\frac{3}{4}A$
- ► Thus, the firms' payoffs in the SPNE is:

$$\pi_1^{\mathfrak{s}} = \frac{1}{4}A \cdot \frac{A}{2} = \frac{A^2}{8}, \pi_2^{\mathfrak{s}} = \frac{1}{4}A \cdot \frac{A}{4} = \frac{A^2}{16}.$$

10.10.12.12.2.2.0

- $\blacktriangleright$  In the Stackelberg competition game, the total quantity supplied is  $\frac{3}{4}A$
- ► Thus, the firms' payoffs in the SPNE is:

$$\pi_1^{\mathfrak{s}} = \frac{1}{4}A \cdot \frac{A}{2} = \frac{A^2}{8}, \pi_2^{\mathfrak{s}} = \frac{1}{4}A \cdot \frac{A}{4} = \frac{A^2}{16}.$$

► Firm 1 obtains a better payoff than firm 2

- In the Stackelberg competition game, the total quantity supplied in [3] = [3]
- I nus, the firms payons in the SPINE is

ayoffs in the SPNE is: 
$$\pi_1^g = \frac{1}{4}A \cdot \frac{A}{2} = \frac{A^2}{8} \sigma_2^g = \frac{1}{4}A \cdot \frac{A}{4} = \frac{A^2}{16}.$$

- ▶ Firm 1 obtains a better payoff than firm 2
- ▶ This is intuitive since firm 1 always has the option of choosing the Cournot quantity  $q_1 = A/3$ , in which case firm 2 will indeed choose  $q_2^*(q_1) = A/3$  giving a payoff of  $A^2/9$

101-00-121-2- 2-040

- $\blacktriangleright$  In the Stackelberg competition game, the total quantity supplied is  $\frac{3}{4}A$
- ► Thus, the firms' payoffs in the SPNE is:

$$\pi_1^{\rm g} = \frac{1}{4}A \cdot \frac{A}{2} = \frac{A^2}{8}, \pi_2^{\rm g} = \frac{1}{4}A \cdot \frac{A}{4} = \frac{A^2}{16}.$$

- ▶ Firm 1 obtains a better payoff than firm 2
- ▶ This is intuitive since firm 1 always has the option of choosing the Cournot quantity  $q_1 = A/3$ , in which case firm 2 will indeed choose  $q_2^*(q_1) = A/3$  giving a payoff of  $A^2/9$
- $\blacktriangleright$  But by choosing something optimal, firm 1 will be able to do even better

