Lecture 16: Appications of Subsame Peffect Nass Equibibrium Mamision Remeo

\square $\delta\left(1-a, \sigma_{z}\right)$

- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 1 accepts or rejects the proposal
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 2 rejects, player 2 makes an offer θ_{2}
- If player 1 rejects, player 1 makes an offer θ_{3}
- Player 1 makes an offer θ_{1}
- Player 2 accepts or rejects the proposal
- If player 1 accepts or rejects the proposal
- If player 1 rejects, player 1 makes an offer θ_{3}
- ... and on and on for T periods

$$
\begin{aligned}
& \text { - Player } 1 \text { makes an offer } \theta_{1} \\
& \text { - Player } 2 \text { accepts or rejects the proposal } \\
& \text { - If player } 1 \text { accepts or rejects the proposal } \\
& \text { - ... and on and on for } T \text { periods } \\
& \text { - If } n 0 \text { offer is ever accepted, both payoffs equal zero } \\
& \begin{array}{l}
\begin{array}{l}
\text { The discount factor is } \delta \leq 1 . \\
\text { If P Player } 1 \text { offer is scecepted by Player } 2 \text { in round } m, \\
\pi_{1}
\end{array}=\delta^{m} \theta_{m},
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ES: }=95 z \text { Se QuEDA } \\
& \text { - There is a unique SPNE: } \\
& \text { Con toto } \rightarrow(0,1) \\
& Z_{5}: \theta_{1}=1-(1-\delta) \delta \rightarrow\left(1-(1-8) \delta_{1}, 1-(1-(1-\delta) \delta)\right) \\
& \xi_{2}: A \quad 1-\epsilon_{1} \geq \underbrace{(1-\delta) \delta} \rightarrow \theta_{1} \leq 1-(1-\delta) \delta \\
& \left\{\begin{array}{l}
\text { In: } \theta_{2}=1-\delta \rightarrow \delta(1-(1-\delta), 1-\delta) \\
\text { In } A \text { si } \delta\left(1-\theta_{2}\right) \geqslant \delta^{z} \rightarrow 1-\theta_{2} \geqslant \delta \rightarrow \theta_{2} \leq 1-\delta
\end{array}\right. \\
& \pi r . \rightarrow\left(c^{2} \rightarrow\right.
\end{aligned}
$$

ERS TRATO en $t=1$

\square

- Player 1 always does a little better when he makes the offer than when Player 2
does
- Player 1 always does a little better when he makes the offer than when Player 2
does
- If we consider just the class of periods in which Player 1 makes the offer, Player
1's share falls

Lecture 16: Applications of Subgame Perfect Nash Equilibrium
Ultimatum Game
Alternating offers
Stackelberg Competition

Lecture 16: Applications of Subgame Perfect Nash Equilibrium
Ultiniatum Game Alternating ofieis Stackelberg Competition - Recall back to the model of Cournot duopoly, where two firms set quantities


```
*)
p(a)+0)
```


11 Fist fim 1 chooses $q_{2} \geq 0$

SUGABOTESS $/$ F1. y Fz)
sugabotzes
gsizategras Pagoo
funciones

Tin

FI tiene Inegrivos a Desuriarseb no

F2

$$
\begin{aligned}
T_{2} & =\left(A-A_{1}^{0}-q_{2}^{0}\right) q_{2} \\
= & \left(1-q_{2}\right) q_{2} \\
\frac{\partial T}{\partial A_{2}}= & A-z q_{2}=0 \\
& q_{2}=\frac{A}{2}
\end{aligned}
$$

EpS (Arenazas (ranizles)

$\bar{T}=2$

$$
\begin{aligned}
& \pi_{2}=\left(A-q_{1}-q_{2}\right) q_{2} \\
& \frac{\partial \pi_{2}}{\partial q_{2}}=A-q_{1}-2 q_{2}=0 \\
& \frac{A-q_{1}}{2}=q_{2}\left(q_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{1}=\left(A-q_{1}-q_{2}\right) q_{1} \\
& \Pi_{1}=\left(A-q_{1}-\left(\frac{A-q_{1}}{2}\right) q_{1}\right. \\
& \pi_{1}=\left(\frac{A-q_{1}}{2}\right) q_{1} \\
& \frac{\partial \pi_{1}}{\partial q_{1}}=\frac{A-2 q_{1}}{2}=0 \\
& \frac{A}{2}=q_{1}^{x}
\end{aligned} \quad q_{1}=\frac{A-\frac{A}{2}}{2}=\frac{A}{4}=q_{1} 1
$$

$$
\begin{aligned}
& q_{1}=\frac{A}{2} \\
& q_{2}=\frac{A}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sum_{\bar{k} c} \quad\left(d_{i=A}^{d} \quad q^{\alpha}-A\right) \cup \sim E N ? \quad N O=
\end{aligned}
$$

$$
\left\{\begin{array}{c}
d E s \quad\left(\begin{array}{c}
\left.q_{1}^{\prime \prime}=\frac{A}{2}, q_{2}^{-}=\frac{A}{n}\right) \cup \sim E N_{j}^{l} \\
\pi_{1}=\left(A-q_{1}-\frac{A}{n}\right) q_{1} \\
\frac{\partial \pi_{1}}{\partial q_{1}}=A-2 q_{1}-\frac{A}{q}=0 \\
\frac{3 A}{n}=2 q_{1} \\
\frac{3 A}{Q}=q_{1}
\end{array}\right.
\end{array}\right\}
$$

$$
\text { - Consider the equilibrium in which } \alpha=0
$$

- This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- The reason is that essentially firm 2 is playing a strategy that involves
non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all
(
- Consider the equilibrium in which $\alpha=0$
- This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- The reason is that essentially firm 2 is playing a strategy that involves
non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all - As a result, the best that firm 1 can do is to produce nothing
- Consider the equilibrium in which $\alpha=0$
- This equilibrium is highly counterintuitive because firm 2 obtains monopoly profits
- The reason is that essentially firm 2 is playing a strategy that involves
non-credible threats
- Firm 2 is threatening to overproduce if firm 1 produces anything at all
- As a result, the best that firm 1 can do is to produce nothing
- If firm 1 were to hypothetically choose $q_{1}>0$, then firm 2 would obtain negative
profits if it indeed follows through with $q_{2}^{*}\left(q_{1}\right)$.
\square
\square
- Many Nash equilibria are counterintuitive in the Stackelberg game - To eliminate such counterintuitive equilibria, we focus instead on SPNE instead of
NE - Lets continue with the setting in which marginal costs are zero and the demand
function is given by $A-q_{1}-q_{2}$
- We always start with the smallest/last subgames which correspond to the
decisions of firm 2 after firm 1's choice of q_{1} has been made

\square
As we already saw, this was not Pareto efficient since each
is strictly less than $1 / 2$ of the monopoly profits.
-
- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} \mathrm{~A}$

- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} \mathrm{~A}$

$$
\begin{aligned}
& \text { Thus, the firms' payoffs in the SPNE is: } \\
& 1, A \quad A^{2}
\end{aligned}
$$

$$
\pi_{1}^{s}=\frac{1}{4} A \cdot \frac{A}{2}=\frac{A^{2}}{8}, \pi_{2}^{s}=\frac{1}{4} A \cdot \frac{A}{4}=\frac{A^{2}}{16} .
$$

- Firm 1 obtains a better payoff than firm 2

This is intuitive since firm 1 always has the option of choosing the Cournot
quantity $q_{1}-A / 3$, in which case firm 2 will indeed choose $q_{2}^{2}\left(q_{1}\right)-A / 3$ giving a
payoff of $A^{2} / 9$

- In the Stackelberg competition game, the total quantity supplied is $\frac{3}{4} \mathrm{~A}$
- Thus, the firms' payoffs in the SPNE is:

$$
\pi_{1}^{\xi}=\frac{1}{4} A \cdot \frac{A}{2}=\frac{A^{2}}{8}, \pi_{2}^{s}=\frac{1}{4} A \cdot \frac{A}{4}=\frac{A^{2}}{16} .
$$

- Firm 1 obtains a better payoff than firm 2

This is intuitive since firm 1 always has the option of choosing the Cournot
quantity $q l_{1}=A / 3$, in which case firm 2 will indeed choose $q_{2}^{2}\left(q_{1}\right)=A / 3$ giving a
payoff of $A^{2} / 9$
payoff of $A^{2} / 9$

- But by choosing

