픈
lectuers

Lecture 18: Repeated Games
Mauricio Romero

Lecture 18: Repeated Games

Recap from last class
More than one NE in the stage game
Example 1
Example 2

Lecture 18: Repeated Games

Recap from last class
More than one NE in the stage game
Eample 1
\qquad

The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma

The basic idea of the proof for this proposition is exactly the same that we saw in
the repeated prisoner's dilemma All past payoffs are sunk

- The basici idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma

In the last period, the incentives of all players are exactly the same as if the game
were being played once

- The basici idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilem
- In the last period, the incentives of all players are exactly the same as if the game
were being played once

Thus all players must play the stage game Nash equilibrium action regardess of
the history of play tp to that point
-The basic idea of the proof for this proposition is exactly the same that we saw in
e repeated prisoner's dilem

- All past payoffs are sunk

In the last period, the incentives of all players are exactly the same as if the game
were being played once the history of play up to that point
But then we can induct

The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
In the last period, the incentives of all players are exactly the same as if the game Were being played once Thus al players must play the stage game Nash equilibrium action regardless of Thus all players must play the stage game Nash equilibrium action regardless of
the history of play up to that point But then we can induct
Knowing that the stage game Nash equilibrium is going to be played tomorrow, at
any information set, we can ignore the past payoffs

The basic idea of the proof for this proposition is exactly the same that we saw in the repeated pisisoner s dile,
In the la
were being pliyed once
Thus all players must play the stage game Nash equilibrium action regardess of
the history of play up to that point the history of play up to that point
But then we can induct
Knowing that the stage game Nash equilibrium is going to be played tomorrow, at
any information set, we can ignore the past payoffs

- We concentrate just on the payoffs in the future. Thus in period $T-1$, player i
simply wants to maximize:

What player i plays today has no consequences for what happens in period T,
since we sav. that all players will play à no nomater what happens in eriod $T-1$

What player i plays today has no consequences for what happens in period T
since we saw that all players will play a^{*} no matter what happens in period $T-1$
So, the maximization problem above is the same
$\max _{a_{i} \in \mathcal{A}} u_{i}\left(a_{i}, a_{-i}^{T-1}\right)$.

What player i plays today has no consequences for what happens in period T
since we saw that all players will lay a ${ }^{\circ}$ no matter what happens in period $T-1$
So, the maximization problem above is the same as

- Thus again, for this to be a Nash equilibrium, we need $a_{1}^{T-1}=a_{1}^{*}, \ldots, a_{n}^{T-1}=a_{n}^{*}$.

What player i plays today has no consequences for what happens in period T
since we saw that all players will play at no matter what happens in period $T-1$
So, the maximization problem above is the same as $\max _{\partial \in \in \mathcal{A}} u_{i}\left(a_{i}, a_{-i}^{T}\right)$.
-Thus again, for this to be a Nash equilibrium, we need $a_{1}^{T-1}=a_{1}^{*}, \ldots, a_{n}^{T-1}=a_{n}^{*}$.
Following exactly this induction. we can condude that every player must play ad
at all times and all histories

- Similarly. playing $\left(C_{1}, C_{2}\right)$ in $t=1$ and $\left(A_{1}, A_{2}\right)$ in $t=2$ is a SPNE
- Similarly. playing $\left(C_{1}, C_{2}\right)$ in $t=1$ and $\left(A_{1}, A_{2}\right)$ in $t=2$ is a SPNE

Player 1 's strategy is given by
Play C_{1} in priod 11_{i}
Play A_{1} at all hilloriese in period
2

- Player 2's strategy is given by

1. Play C_{2} in period 1 i;
-This is uninteresting since Nash equilibria are played in every period

- This is uninteresting since Nash equilibria are played in every period
- But are there more?

[^0]-This is uninteresting since Nash equilibria are played in every period

- But are there more?

The SPNE that we've considiered, players always play strategies that do not
condition on what happened in the past

- What makes a repeated game interesting is when players play strategies in SPNE
that condition on what happened in the past

This is uninteresting since Nash equilibria are played in every period
But are there more?
The SPNE that we've considered, players always play strategies that do not
condition on what happened in the past
What makes a repeated game interesting is when players play strategies in SPNE What makes a repeated game ineterestige thition on what happened in the past
This could not happen when the stage game had a unique NE
-This is uninteresting since Nash equilibria are played in every period
But are there more?
-The SPNE that we've considered, players always play strategies that do not on what happened in the past
What makes a repeated game interesting is when players play strategies in SPNE
that condition on what happened in the past
This could not happen when the stage game had a unique NE
In the last period, all players were eequired to play the unique NE action after all
histories!

This is uninteresting since Nash equilibria are played in every perio
But are there more?
The SPNE that we've considered, players always play strategies that do not
condition on what happened in the past
condition on what happened in the past
What makes a repeated game interesting is when players play strategies in SPNE
that condition on what happened in the past

- This could not happen when the stage game had a urique NE

In the last period, all players were required to play the unique $N E$ action after all
histories!

This is uninteresting since Nash equilibria are played in every period
But are there more?
The SPNE that we've considered, players always play strategies that do not
condition on what happened in the past
What makes a repeated game interesting is when players play strategies in SPNE

- This could not happen when the stage game had a unique NE

In the last period. all players were required to play the unique NE action after all In the last period
histories! Why?

```
Proof
    To see this, supose that a history (a, (az) was played in period 1 resulting in
```

Proof

To see this, suppose that a history $\left(a_{1}, a_{2}\right)$ was played in period 1 resulting in
payoffs from period 1 of (x, y)
Then the normal form of the subgame starting in period 2 is given by:

Normal Form			
	A_{2}	B_{2}	C_{2}
A_{1}	$(x, y)+\delta(1,1)$	$(x, y)+\delta(0,0)$	$(x, y)+\delta(0,0)$
B_{1}	$(x, y)+\delta(0,0)$	$(x, y)+\delta(4,4)$	$(x, y)+(1,5)$
C_{1}	$(x, y)+\delta(0,0)$	$(x, y)+\delta(5,1)$	$(x, y)+\delta(3,3)$

Proof

Since we are just adding the same (x, y) to each cell and multiplying by δ, the
Nash equilibrium remains unchanged from the original stage game

Since we are just adding the same (x, y) to each cell and multiplying by δ, the Nash equilibrium remains unchanged from the original stage game

- The set of Nash equilibria of this subgame is given by $\left(A_{1}, A_{2}\right)$ and $\left(C_{1}, C_{2}\right)$

Proof
\qquad Nash equilibrium remains unchanged from the original stage game

- The set of Nash equilibria of this subgame is given by $\left(A_{1}, A_{2}\right)$ and $\left(C_{1}, C_{2}\right)$
- Thus after any history, the set of pure strategy NE are $\left(A_{1}, A_{2}\right)$ or $\left(C_{1}, C_{2}\right)$

Proof

- Since we are just adding the same (x, y) to each cell and multiplying by δ, the Nash equilibrium remains unchanged from the original stage game
- The set of N ash equilibria of this subgame is given by $\left(A_{1}, A_{2}\right)$ and $\left(C_{1}, C_{2}\right)$
- Thus after any history, the set of pure strategy NE are $\left(A_{1}, A_{2}\right)$ or $\left(C_{1}, C_{2}\right)$
- Since SPNE requires Nash equilibrium in every subgame, this means that after
any history. $\left(A_{1}, A_{2}\right)$ or $\left(C_{1}, C_{2}\right)$ must be played any history. $\left(A_{1}, A_{2}\right)$ or (C_{1}, C_{2}) must be played

- Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
- Anna plays the following strategy:
- Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
$\left(B_{1}, B_{2}\right)$ in $t=1$
- Anna plays the following strategy:

1. Play B_{1} in period 1 .
2. Play B_{1} in period 1 .

- Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
$\left(B_{1}, B_{2}\right)$ in $t=1$
- Anna plays the following strategy:

1. Play B_{1} in period 1 .

Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
$\left(B_{1}, B_{2}\right)$ in $t=1$

- Anna plays the following strategy:

1. Play B_{1} in period 1 .
2. Play A_{1} in period 2 if anything other than $\left(B_{1}, B_{2}\right)$ is played in period 1 ,
3. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1 .

- Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
- Anna plays the following strategy:

1. Play B_{1} in period 1 .
2. Play A_{1} in period 2 if anything other than $\left(B_{1}, B_{2}\right)$ is played in period 1 ,
3. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1 .

Bob plays a sion 1

- Bob plays a similar strategy:
- Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$
- Anna plays the following strategy:

2. Play A_{1} in period 2 if anything other than $\left(B_{1}, B_{2}\right)$ is played in period 1 ,
3. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1
. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1 .

- Bob plays a similar strategy:

Play B_{2} in period 1.

Consider the following strategy profile, where we punish in $t=2$ if we don't play
$\left(B_{1}, B_{2}\right)$ in $t=1$

- Anna plays the following strategy:

1. Play B_{1} in period 1.
2. Play A_{1} in period 2 if anything other than $\left(B_{1}, B_{2}\right)$ is played in period 1 ,
3. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1
. Play C_{1} in period 2 if $\left(B_{1}, B_{2}\right)$ is played in period 1 .

- Bob plays a similar strategy:

1. Play B_{2} in period 1 .

The subgame is just the original game with a payoff of $(4,4)$ added to each box
and multiplying by δ and multiplying by δ

$$
\begin{aligned}
& 2 \delta>1 \\
& \delta>1 / 2 \rightarrow \delta_{\text {Vilozo Cunt }}^{\substack{\text { cl }}}
\end{aligned}
$$

- The subgame is just the original game with a payoff of $(4,4)$ added to each box
and multiplying by δ and multiplying by δ
- If we add the same utility to all boxes, then the preferences of players are completely unchanged
- Therefore the set of Nash equilibria are the same in this subgame as in the stage
game game
- The subgame is just the original game with a payoff of $(4,4)$ added to each box
and multiplying by δ and multiplying by δ
- If we add the same utility to all boxes, then the preferences of players are completely unchanged
- Therefore the set of Nash equilibria are the same in this subgame as in the stage game
- So it is a Nash equilibrium in this subgame for players to play $\left(A_{1}, A_{2}\right)$, which is
consistent with the strategy that we proposed consistent with the strategy that we proposed
- Let us now check that after observing $\left(\alpha_{1}, \alpha_{2}\right) \neq\left(B_{1}, B_{2}\right)$, then it is a Nash equilibrium in the subgame for players to play (C_{1}, C_{2})
- Let us now check that after observing $\left(\alpha_{1}, \alpha_{2}\right) \neq\left(B_{1}, B_{2}\right)$, then it is a Nash II $\left(a_{1}, a_{2}\right) \neq\left(B_{1}, B_{2}\right)$ s absent
- If $\left(\alpha_{1}, \alpha_{2}\right) \neq\left(B_{1}, B_{2}\right)$ is observed there are some payoffs (x, y) such that the subgame induces the following normal form

$$
\rightarrow\left(B_{1}, B_{2}\right) \in N T=1 \text { es EPSS SI } \delta D^{1 / 2}
$$

- Again in this case, note that we are simply adding the same payoff profile (x, y) to
every box and multiplying by δ every box and multiplying by δ
- Again in this case, note that we are simply adding the same payoff profile (x, y) to every box and multiplying by δ
- Therefore, the Nash equilibrium is again the set of Nash equilibrium of the original stage game
- Again in this case, note that we are simply adding the same payoff profile (x, y) to every box and multiplying by δ
- Therefore, the Nash equilibrium is again the set of Nash equilibrium of the original stage game
- In this subgame, it is a Nash equilibrium for players to play $\left(A_{1}, A_{2}\right)$
- We have checked that the strategy profile was indeed a Nash equilibrium in all
subgames that begin in period 2

So we can simplify the game which gives the following game tree.

The normal form of this game (conditional on what happens in $T=2$) is:
Normal Form

A_{2}					B_{2}	C_{2}
A_{1}	$1+\delta, \delta, 1, \delta$	δ, δ	δ, δ			
B_{1}	δ, δ	$4+3,4,4+3 \delta$	$1+\delta, 5+\delta$			
C_{1}	δ, δ	$5+\delta, 1+\delta$	$3+\delta, 3+\delta$			

- In this game the best response for player i is:
$B R_{i}\left(s_{-i}\right)=\left\{\begin{array}{l}A_{i} \text { if } s_{-i}=A_{-i} \\ B_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \geq 5+\delta \\ C_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \leq 5+\delta \\ C_{i} \text { if } s_{-i}=C_{-i}\end{array}\right.$

In this game the best response for player i is:
$B R_{i}\left(s_{-i}\right)=\left\{\begin{array}{l}A_{i} \text { if } s_{-i}=A_{-i} \\ B_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \geq 5+\delta \\ C_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \leq 5+\delta \\ C_{i} \text { if } s_{-i}=C_{-i}\end{array}\right.$

- $\left(B_{1}, B_{2}\right)$ is a Nash equilibrium if $4+3 \delta \geq 5+\delta$
- In this game the best response for player i is:

$$
B R_{i}\left(s_{-i}\right)=\left\{\begin{array}{l}
A_{i} \text { if } s_{-i}=A_{-i} \\
B_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \geq 5+\delta \\
C_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \leq 5+\delta \\
C_{i} \text { if } s_{-i}=C_{-i}
\end{array}\right.
$$

- $\left(B_{1}, B_{2}\right)$ is a Nash equilibrium if $4+3 \delta \geq 5+\delta$
(B_{1}, B_{2}) is a Nash equilibrium if $\delta>1 / 2$
- In this game the best response for player i is:
$B R_{i}\left(\mathrm{~s}_{-i}\right)=\left\{\begin{array}{l}A_{i} \text { if } s_{-i}=A_{-i} \\ B_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \geq 5+\delta \\ C_{i} \text { if } s_{i}=B_{-i} \& 4+3 \delta \leq 5+\delta \\ C_{i} \text { if } s_{-i}=C_{-i}\end{array}\right.$
- $\left(B_{1}, B_{2}\right)$ is a Nash equilibrium if $4+3 \delta \geq 5+\delta$

Tindeed a subgame perfect Nash equilibrium if players value the future enough | $\begin{array}{l}\text { indeed a subg } \\ (\delta>1 / 2)\end{array}$ |
| :--- |

- In this game the best response for player i is:
$B R_{i}\left(s_{-i}\right)=\left\{\begin{array}{l}A_{i} \text { if } s_{-i}=A_{-i} \\ B_{i} \text { if } s_{-i}=B_{-i} \& 4+3 \delta \geq 5+\delta \\ C_{i} \text { if } s_{i}=B_{-i} \& 4+3 \delta \leq 5+\delta \\ C_{i} \text { if } s_{-i}=C_{-i}\end{array}\right.$
- $\left(B_{1}, B_{2}\right)$ is a Nash equilibrium if $4+3 \delta \geq 5+\delta$
- $\left(B_{1}, B_{2}\right)$ is a Nash equilibrium if $\delta>1 / 2$
- The strategy profile defined for Anna and Bob at the beginning of this section is indeed a sul
$(\delta>1 / 2)$
- If players value the future enough ($\delta>1 / 2$), then the future prize is worth the
short term loss
- What is the take away of this exercise?
-What is the take away of this exercise?
- In the repeated Prisoner's Dilemma, the stage game (played just once) had just
one Nash equilibrium

In the repeated Prisoner's Dilemma, the stage game (played just once) had just
In the repeated Priso
one Nash equilibrium
The orly suggame perfect Nash equilibrium was to play the Nash equilibrium of
the stage game in every period

- What is the take away of this exercise?
- In the repeated Prisoner's Dilemma, the stage game (played just once) had just
one Nash equilibrium

The only subgame perfect Nash equilibrium was to play the Nash equilibrium of
the stage game in every period
In fact, one can prove generally that if the stage game has only one Nash equififrium then in the repeated game with that stage game, the unique subgame perfect Nash equilibrium requires the Nash equilibrium to be played in all periods
and all information sets

- What is the take away of this exercise?
- In the repeated Prisoner's Dilemma, the stage game (played just once) had just

The only subgame perfect Nash equilbrium was to play the Nash equilibrium of
ne in every period
In fact, one can prove generally that if the stage game has only one Nash
In fact, one can prove generally that if the stage game has only one Nash
eepuilibrium then in the repeated game with that stage egame, , he unique suggame
perfect Nash equilibrium requires the Nash equilibrium to be played in all periods
and and all information sets
In contrast, in this game, we saw that there was a subgame perfect Nash equilibrium in which an action profile (B_{1}, B_{2}) that was not a Nash equilibrium of the stage game was played in period 1

- What is the take away of this exercise?
- In the repeated Prisoner's Dilemma, the stage game (played just once) had just
-The only subgame perfect Nash equilibrium was to play the Nash equilibrium of
the stage game in every period
In fact, one can prove generally that if the stage game has only one Nash
equilibrium then in the repeated game with that stage game, the unique subgame
perfect Nash equilibrium requires the Nash equilibrium to be played in all periods
and all information sets
In contrast, in this same, we saw that there was a subgame perfect Nash
equilibrium in which an action profile (B_{1}, B_{2}) that was not a Nash equilibrium of
the stage game was played in period 1
the stage game was played in period
This was becuse there were multiple \mathbb{N} verain wheri of the stage game that
could be used as priz//punishment for certain behaviors

Are there any other action profiles that can be played in the first period? Normal Form | A_{1} | A_{2} | B_{2} | C_{2} |
| :---: | :---: | :---: | :---: |
| B_{1} | 1,1 | 0,0 | 0,0 |
| B_{1} | 0,0 | 4,4 | 1,5 |
| G_{1} | 0, | 5 | 1,3 |

- Are there any other action profiles that can be played in the first period?

Nomal Form

Suppose that the players were to play $\left(A_{1}, B_{2}\right)$ in the first period

Are there any other action profiles that can be played the first period
Normal Form

Suppose that the players were to play $\left(A_{1}, B_{2}\right)$ in the first period
Can this occur? The answer is no

- Are there any other action profiles that can be played in the first period?

- Suppose that the players were to play $\left(A_{1}, B_{2}\right)$ in the first period
- Can this occur? The answer is no

Remember either $\left(A_{1}, A_{2}\right)$ or $\left(C_{1}, C_{2}\right)$ must be played in any pure strategy SPNE after a history

- Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE
- Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE

Suppose othervis

Now let us argue that (A_{1}, B_{2}) cannot be played in period 1 in a SPNE

- Suppose otherwise

No matter what happens in the second period, there is no way A_{1} could be a best response against B_{2} in the first period.

- Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE
- Suppose otherwise

No matter what happens in the second period, there is no way A_{1} could be a best

- The maximum payoff that player 1 could get from playing according to this
"supposed" SPNE: $\quad u_{1}\left(A_{1}, B_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta$

Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE
Suppose otherwise
No matter what happens in the second period, there is no way A_{1} could be a best
response against B_{2} in the first period.
The maximum payoff that player 1 could get from playing according to this
"supposed" SPNE:
supposed" SPNE: $\quad u_{1}\left(A_{1}, B_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta$
Now suppose that player 1 deviates to C_{1} instead of playing A_{1}

Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE

- Suppose otherwise

No matter what happens in the second period, there is no way A_{1} could be a best

- The maximum payoff that player 1 could get from playing according to this
"supposed" SPNE: $\quad u_{1}\left(A_{1}, B_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta$
Now suppose that player 1 deviates to C_{1} instead of playing A_{1}
- The worst the payoff that he could get in any SPNE:
$u_{1}\left(C_{1}, B_{2}\right)+\delta u_{1}\left(A_{1}, A_{2}\right)=5+\delta$

Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPN
Suppose otherwise
No matter what happens in the second period, there is no way A_{1} could be a best
response against B_{2} in the first period
-The maximum payoff that player 1 could get from playing according to this
"supposed" SPNE:
$u_{1}\left(A_{1}, B_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta$
Now suppose that player 1 deviates to C_{1} instead of playing A_{1}
The worst the payoff that he could get in any SPNE: $\omega_{1}\left(C_{1}, B_{2}\right)+\delta u_{1}\left(A_{1}, A_{2}\right)=5+\delta$

- $5+\delta$ is always greater than 3δ

Now let us argue that $\left(A_{1}, B_{2}\right)$ cannot be played in period 1 in a SPNE
Suppose otherwise

- No matter what happens in the second period, there is no way A_{1} could be a best
response against B_{2} in the first period.
- The maximum payoff that player 1 could get from playing according to this
"supposed" SPNE:

Now suppose that player 1 deviates to C_{1} instead of playing A_{1}
The worst the payoff that he could get in any SPNE:
$\underbrace{u_{1}\left(C_{1}, B_{2}\right)}+\delta_{u_{1}\left(A_{1}, A_{2}\right)}=5 t^{-\delta}$
$5+\delta$ is always greater than 30
By playing C_{1} against B_{2}, player 1 can guarantee a higher payoff
$5<2 \delta$ $\frac{5}{2}<\delta$ NO GS

- Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1 ? $\delta \in[0,1]$

Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1 ?

- The answer is no for the same reason
- Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1?

The answer is no for the same reason

- By playing A_{1} against C_{2}, the best that player 1 can hope for in a SPNE is $u_{1}\left(A_{1}, C_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta$
- Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1?
- The answer is no for the same reason
- By playing A_{1} against C_{2}, the best that player 1 can hope for in a SPNE is:

$$
u_{1}\left(A_{1}, C_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta
$$

- The worst payoff that player 1 can obtain by playing C_{1} instead in period 1 is: $u_{1}\left(C_{1}, C_{2}\right)+\delta u_{1}\left(A_{1}, A_{2}\right)=3+\delta$
- Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1?
- The answer is no for the same reason
- By playing A_{1} against C_{2}, the best that player 1 can hope for in a SPNE is:

$$
u_{1}\left(A_{1}, C_{2}\right)+\delta u_{1}\left(C_{1}, C_{2}\right)=3 \delta
$$

- The worst payoff that player 1 can obtain by playing C_{1} instead in period 1 is: $u_{1}\left(C_{1}, C_{2}\right)+\delta u_{1}\left(A_{1}, A_{2}\right)=3+\delta$
- $3+\delta$ is always greater than 3δ
- Can there be a SPNE in which $\left(A_{1}, C_{2}\right)$ is played in period 1?
- The answer is no for the same reason
- By playing A_{1} against C_{2}, the best that player 1 can hope for in a SPNE is:
\qquad

$$
3 \delta>3+\delta
$$

- $3+\delta$ is always greater than 3δ

$$
2 \delta>3
$$

- Thus, there are incentives to deviate

$$
\begin{aligned}
& 2 \delta>3 \\
& 1 d>3 / 2 \mathrm{~cm}_{\text {Ps } 36}
\end{aligned}
$$

Symmetrically there cannot be any SPNE in which $\left(B_{1}, A_{2}\right)$ and $\left(C_{1}, A_{2}\right)$ are
played in period 1 played in period 1

- Symmetrically there cannot be any SPNE in which $\left(B_{1}, A_{2}\right)$ and $\left(C_{1}, A_{2}\right)$ are played in period 1
- We already know that $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right),\left(C_{1}, C_{2}\right)$ can be played in a SPNE in
period 1 period 1

Slayed in ce cannot be any SPNE in which (B_{1}, A_{2}) and (C_{1}, A_{2}) are played in period 1

- We already know that $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right),\left(C_{1}, C_{2}\right)$ can be played in a SPNE in period 1
- The remaining question is whether $\left(C_{1}, B_{2}\right)$ can be played in period 1
- Consider the following strategy profile

- We know that the strategy is a $N E$ in the subgames that start in $t=2$

$$
\begin{aligned}
& T=1 \\
& u_{1}\left(c_{1}, B_{2}\right)+\delta u_{1}\left(c_{1}, c_{2}\right)=5+3 \delta \quad C_{1} M 匕 \\
& U_{1}\left(B_{1}, B_{2}\right)+\delta U_{1}\left(C_{1} C_{2}\right)=4+3 \delta \\
& \begin{array}{ll}
U_{1}\left(B_{1}, B_{2}\right)+\delta U_{1}\left(C_{1}, C_{2}\right)=4 \\
U_{1}\left(U_{1}, B_{2}\right)+\delta U_{1}\left(C_{1}, C_{2}\right)=0+3 \delta & B_{2} \succcurlyeq C_{2}
\end{array} \\
& \begin{array}{l}
U_{2}\left(C_{1}, B_{2}\right)+\delta U_{2}\left(C_{1} C_{2}\right)=++3 \delta
\end{array} \Rightarrow 1+3 \delta \geqslant 3+\delta \\
& U_{2}\left(C_{1}, A_{2}\right)+\delta U_{2}\left(C_{1}, C_{2}\right)=0+3 \delta \\
& U_{2}\left(C_{1}, C_{2}\right)+\delta \underline{U_{2}\left(A_{1}, A_{2}\right)}=3+1 \delta \\
& 2 \delta \geqslant 2 \\
& \delta \geqslant 1 \rightarrow \delta=1
\end{aligned}
$$

－We know that the strategy is a NE in the subgames that start in $t=2$
－But what about the whole game？

So we can simplify the game which gives the following game tree．

The normal form of this game（conditional on what happens in $T=2$ ）is：

$$
B R_{1}\left(s_{2}\right)= \begin{cases}A_{1} & \text { if } s_{2}=A_{2} \\ C_{1} & \text { if } s_{2}=B_{2} \\ C_{1} & \text { if } s_{2}=C_{2} \\ B_{1} & \text { if } s_{2}=C_{2} \& \delta=1\end{cases}
$$

$$
B R_{1}\left(s_{2}\right)= \begin{cases}A_{1} & \text { if } s_{2}=A_{2} \\ C_{1} & \text { if } s_{2}=B_{2} \\ C_{1} & \text { if } s_{2}=C_{2} \\ B_{1} & \text { if } s_{2}=C_{2} \& \delta=1\end{cases}
$$

$$
B R_{2}\left(s_{1}\right)= \begin{cases}A_{2} & \text { if } s_{1}=A_{1} \\ C_{2} & \text { if } s_{1}=B_{1} \\ C_{2} & \text { if } s_{1}=C_{1} \\ B_{2} & \text { if } s_{1}=C_{1} \& \delta=1\end{cases}
$$

－An equilibrium outcome of this game is to play $\left(C_{1}, B_{2}\right)$ in period 1 and $\left(C_{1}, C_{2}\right)$
in period 2 if $\delta=1$

$$
T=\perp
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
⿹ 勹 巳_{1},\left(A_{1}, B_{2}\right)+\delta V_{1}\left(A_{1}, A_{2}\right)=0+\delta \\
V_{1}\left(B_{1}, B_{2}\right)+\delta U_{1}\left(A_{1}, A_{2}\right)=3+\delta \\
V_{1}\left(C_{1}, B_{2}\right)+\delta V_{1}\left(C_{1}, C_{2}\right)=5+3 \delta
\end{array}\right\} C_{1} \geqslant A_{1}, \\
& 5 \\
& v_{2}\left(C_{1}, A_{2}\right)+\delta U_{2}\left(A_{1} A_{2}\right)=0+\delta \\
& 1+3 \delta \geqslant 3+\delta \\
& \left.\begin{array}{l}
U_{2}\left(C_{1}, B_{2}\right)+\delta U_{2}\left(G_{1}, C_{2}\right)=1+3 \delta \delta \\
U_{2}\left(C_{1}, C_{2}\right)+\delta U_{2}\left(A_{1}, A_{2}\right)=3+\delta
\end{array}\right\} \\
& 2 \delta \geqslant 2 \\
& 18 \geqslant 1
\end{aligned}
$$

The normal form of this game (conditional on what happens in $T=2$) is:

\[

\]

- In this game the best response for player i is:

$$
B R_{1}\left(s_{2}\right)= \begin{cases}A_{1} & \text { if } s_{2}=A_{2} \\ C_{1} & \text { if } s_{2} \\ C_{1} & \text { if } s_{2}=C_{2}\end{cases}
$$

- In this game the best response for player 2 is:
$B R_{2}\left(s_{1}\right)= \begin{cases}A_{2} & \text { if } s_{1}=A_{1} \\ C_{2} & \text { if } s_{1}=B_{1} \\ C_{2} & \text { if } s_{1}=C_{1} \\ B_{2} & \text { if } s_{1}=C_{1} \& \delta=1\end{cases}$
- An equilibrium outcome of this game is to play $\left(C_{1}, B_{2}\right)$ in period 1 and $\left(C_{1}, C_{2}\right)$.
in period 2 if $\delta=1$
- There are many many pure strategy SPNE of this game!
- There are many many pure strategy SPNE of this game!

The set of pure strateg. SPNE can involve the e play of non-stage game NE action
profilies in period 1 (athoush in period 2 , players must play stage game NE)

- There are many many pure strategy SPNE of this game!

The set of pure strategy SPNE can involve the play of non-stage game NE action
profies in period 1 (although in period 2 , players must play stage game NE)

- We've already seen that there may be multiple SPNE that lead to the same
equilibrium outcomes
-There are many many pure strategy SPNE of this game!
- The set of pure strategy SPNE can involve the play of non-stage game NE action
- We've already seen that there may be multiple SPNE that lead to the same
- Thus, characterizing all pure strategy SPNE is extremely tedious

-The above game has two Nasts equilibria ($\left.B_{1}, B_{2}\right)$ and $\left(C_{1}, C_{2}\right)$
- The above game has two Nash equilibria $\left(B_{1}, B_{2}\right)$ and $\left(C_{1}, C_{2}\right)$ - Even though there are multiple Nash equilibria, there are no subgame perfect equilibria in which $\left(A_{1}, A_{2}\right)$ is played in period 1
The above game has two Nash equilibria $\left(B_{1}, B_{2}\right)$ and $\left(C_{1}, C_{2}\right)$ - Even though there are multiple Nash equilibria, there are no subgame perfect equilibria in which $\left(A_{1}, A_{2}\right)$ is played in period 1 - Either $\left(B_{1}, B_{2}\right)$ or (C_{1}, C_{2}) must be played after the history $\left(A_{1}, A_{2}\right)$ in period 1 since in the tast perrod, always one of the stage game Nash equilibria must be played.
Case 1: - Suppose that $\left(B_{1}, B_{2}\right)$ is played in period 2 after $\left(A_{1}, A_{2}\right)$ in period 1
Case 1: - Suppose that $\left(B_{1}, B_{2}\right)$ is played in period 2 after $\left(A_{1}, A_{2}\right)$ in period 1 - Player 2 obtains a payoff of
Case 1: - Suppose that $\left(B_{1}, B_{2}\right)$ is played in period 2 after $\left(\underline{A_{1}, A_{2}}\right)$ in period 1 - Player 2 obtains a payoff of $10+\delta$ - By deviating to B_{2} in period 1, player 2 obtains at least: since in period 2 either $\left(B_{1}, B_{2}\right)$ or
Case 1: - Suppose that $\left(B_{1}, B_{2}\right)$ is played in period 2 after $\left(A_{1}, A_{2}\right)$ in period 1 - Player 2 obtains a payoff of $10+\delta$ - By deviating to B_{2} in period 1, player 2 obtains at least: $11+\delta$ since in period 2 either $\left(B_{1}, B_{2}\right)$ or $\left(C_{1}, C_{2}\right)$ will be played in any SPNE - Thus there are incentives to deviate
Case 2: - Suppose instead that $\left(C_{1}, C_{2}\right)$ is played in period 2 after $\left(A_{1}, A_{2}\right)$ in period 1

- Player 2:
- If he follows: $u_{2}=10+\delta$
-If he defects: $u_{2}=9+38$
- Follows if $\delta \leq \frac{1}{2}$
- Can only be a SPNE is $\delta=\frac{1}{2}$

- This is not a SPNE Either because now player 1 has a definitive incentive to
deviate from $\left(A_{1}, A_{2}\right)$ in period 1 Stage Game

| A_{1} | A_{2} | B_{2} | C_{2} |
| :--- | :---: | :---: | :---: | :---: |
| A_{1} | $(10,10)$ | $(0,9)$ | $(0,9)$ |
| B_{1} | $(1,1)-1)$ | $(3,1)$ | |
| C_{1} | $(11,-2)$ | $(0,0)$ | |

- Player 1:

- This is not a SPNE either because now player 1 has a definitive incentive to deviate from $\left(A_{1}, A_{2}\right)$ in period 1			
Stage Game			
	A_{2}	B_{2}	c_{2}
A_{1}	(10,10)	(0,9)	$(0,9)$
B_{1}	(11,-1)	(3,1)	$(0,0)$
C_{1}	(11,-2)	$(0,0)$	$(1,3)$
- Player 1:			
- If he follows: $u_{1}=10+\delta$			

This is not a SPNE either because now player 1 has a definitive incentive to deviate from $\left(A_{1}, A_{2}\right.$) in period 1

Stage Game			
	A_{2}	B_{2}	C_{2}
A_{1}	$(10,10)$	$(0,9)$	(0,9)
B_{1}	(11,-1)	(3,1)	$(0,0)$
C_{1}	(11,-2)	$(0,0)$	$(1,3)$

- Player 1:
- If he follows: $u_{1}=10+\delta$
-If he defects: $u_{1}=11+3 i$
- This is not a SPNE either because now player 1 has a definitive incentive to
deviate from $\left(A_{1}, A_{2}\right)$ in period 1

- Player 1
- If he follows: $u_{1}=10+\delta$
-If he defects: $u_{1}=11+3 \bar{j}$
- Always defects

[^0]: $\left(B_{1}, B_{2}\right)$
 -This is uninteresting since Nash equilibria are played in every perio

 - But are there more?
 - The SPNE that we've considered, players always play strategies that do not condition on what happenened in the past

