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> One of the features of finitely repeated games was that if the stage game had a
unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the
repetition of that unique stage game Nash equilibrium
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unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the
repetition of that unique stage game Nash equilibrium

> This happened because there was a last period from which we could induct
backwards (and there was a domino effect!)
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This happened because there was a last period from which we could induct
backwards (and there was a domino effect!)

> When the game is instead inﬂnm;gﬁae_—thls argument no longer applies
since there is no such thing as a last perio



> Lets first define what an infinitely repeated game is
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> Each player i has an action set A;

> Lets first define what an infinitely repeated game is

> We start with a stage game whose utilities are given by uy, s, . .., Uy

» Each player i has an action set A;

> In each period t = 0,1,2, .., players simultaneously choose an action a; € A; and

the chosen action profile (a1, az,. .., an) is observed by all players

> Lets first define what an infinitely repeated game is

> We start with a stage game whose utilities are given by uy. u
» Each player i has an action set A;
——

> In each period ¢ = 0,1,2,..., players simultaneously choose an action 2, A; and
the chosen action profile (a1, a2, .. . a,) is observed by all players

» Then play moves to period ¢ + 1 and the game continues in the same manner.

» It is impossible to draw the extensive form of this infinitely repeated game
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> Each information set of each player i associated with a finitely repeated game
corresponded to a history of action profiles chosen in the past
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B — (0), bt = (%= (2,

> It is impossible to draw the extensive form of this infinitely repeated game

> Each information set of each player i associated with a finitely repeated game
corresponded Lo a history of action profiles chosen in the past
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> We can represent each information st of player i by a history:

» We denote the set of all histories at time t as H*

Prisoner's Dilemma

> For example, if he stage game is the prisoner’s dilemma, at period 1, there are 4
possible histories: ———

(G, ). (G D). (D1, Go). (Dr. P2)} = HY

> For example, if the stage game is the prisoner’s dilemma, at period 1, there are 4
possible histories:

{(G1,G). (G, D2), (D1, G). (D1, D)} = H*

» For time t, H* consists of 4 possible histories
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For example, if the stage game is the prisoner’s dilemma, at period 1, there are 4
possible histories:

{(€1,).(C1. D2). (D1, G). (D1, D2)} = HY.
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For time t, H* consists of 4! possible histories
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This means that there is a one-to-one mapping between all possible histories and
the information sets if we actually wrote out the whole extensive form game tree
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For example, if the stage game s the prisoner's dilemma, at period 1, there are 4
possible histories:

{(G1,G). (G, Do), (D1, G), (D1, Do)} = HY.

v

For time t, H* consists of 4 possible histories
This means that there is a one-to-one mapping between all possible hisigries and
the information sets if we atually wrote out the whole extensive form game tree

As a result, we can think of each hf & Ht as representing a particular information
set for each player i in each time ¢

v
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Therefore, it is a function that describes:

s JH = AL
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Intuitively, s; describes exactly what player j would do at every possible history hf,
where s;(ht) describes what player i would do at history ht



> For example in the infinitely repeated prisoner's dilemma, the strategy s;(h*) = G;
for all A and all t is the strategy in which player i always plays C; regardless of
the history

> For example in the infinitely repeated prisoner's dilemma, the strategy s;(h) = G
for all ht and all t is the strategy in which player i always plays C; regardless of
the history

> There can be more complicated strategies such as the following:

Oorhi—
s’_(m:{c, ift=0orh*=(C,C,....C),

D;  otherwise.

For example in the infinitely repeated prisoner's dilemma, the strategy s;(h*) = G
for all A" and all ¢ is the strategy in which pTayer T aWays plays C; regardless of
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> There can be more complicated strategies such as the following:

5,(/7'):% af]r:u}y h=(C.C.....C),

otherwise.

> The above is called a grim trigger strategy
—_—
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» How are payoffs determined in the repeated game?

> Suppose the strategies s1,. .., s, are played which lead to the infinite sequence of
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» Suppose the strategies si...., s, are played which lead to the infinite sequence of
action profiles:

> Then the payoff of player i in this repeated game is given by:
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» How are payoffs determined in the repeated game?
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> Suppose the strategies si. ..., s, are played which lead to the infinite sequence of
action profiles:

> Then the payoff of player i in this repeated game is given by: v
o U 80+ 8 Uit -~

» Intuitively, the contribution to payoff of time t action profile a* is discounted by &*
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> How are payoffs determined in the repeated game?

» Suppose the strategies sy, ..., s, are played which lead to the infinite sequence of
action profiles:

b Then the payoff of player i in this repeated game is given by: >
= U féu, + & Urst -~

> Intuitively, the contribution to payoff of time ¢ action profile at is discounted by ¢

> It may be unreasonable to think about an infinitely repeated game

> It may be unreasonable to think about an infinitely repeated game

> However the discount factor instead could be interpreted by the probability of the
game/ relationship ending at any point in time.

> It may be unreasonable to think about an infinitely repeated game

» However the discount factor instead could be interpreted by the probability of the
game/relationship ending at any point in time.

> Thus, an infinitely repeated game does not necessarily represent a scenario in
which there are an infinite number of periods, but rather a relationship which ends
in finite time with probability one, but in which the time at which the relationship
ends is uncertain

> Lets see some examples of how to compute payoffs in the repeated game

» Lets see some examples of how to compute payoffs in the repeated game

> Consider first the strategy profile in which s;(ht) = C; for all i = 1,2 and all h.
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> In this case, the payoff of player 1 in this repeated game is given by:

> Lets see some examples of how to compute payoffs in the repeated game
> Consider first the strategy profile in which s;(h*) = C; for all i = 1,2 and all A

> In this case, the payoff of player 1 in this repeated game is given by:
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» What about in the grim trigger strategy profile?
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» Lets see some examples of how to compute payoffs in the repeated game

G forall i and all At

Consider first the strategy profile in which s;(h*

> In this case, the payoff of player 1 in this repeated game is given by:

> What about in the grim trigger strategy profile?

> In that case, if all players play the grim trigger strategy profile, the sequence of
actions that arise is again (C, C....)

> Lets see some examples of how to compute payoffs in the repeated game
> Consider first the strategy profile in which s;(ht) = C; for all i = 1,2 and all At

e,Z
> In this case, the payoff of player 1 in this repeated game is given by €z
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» What about in the grim triﬁﬁer strategy profile?
In that case, if all players play the grim trigger strategy profile, the sequence of
actions that arise is again (C,C....)
> Thus the payoffs of all players is agai
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> How about a more complicated strategy profile?

» Houw about a more complicated strategy profile?

» Suppose that 5;(h’) = (C1, D2) and the strategy profile says to do exactly what
the opponent did in the previous period
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How about a more complicated strategy profile?
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Suppose that s5;(h°) — (Cy, D;) and the strategy profile says to do exactly what
the opponent did in the previous period

v

Then if both players play these strategies, then the sequence of actions that arise
is:

(G1.D2), (D1, ©2).(C1. Da). ...

v

v

How about a more complicated strategy profile? >
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Introduction to Infinitely Repeated Games
Subgame Perfect Nash Equilibrium

> What is a subgame perfect Nash equilibrium in an infinitely repeated game?

> What is a subgame perfect Nash equilibrium in an infinitely repeated game?

> It is exactly the same idea as in the finitely repeated game or more generally
extensive form games

> What is a subgame perfect Nash equilibrium in an infinitely repeated game?

> It is exactly the same idea as in the finitely repeated game or more generally
extensive form games

> That is a strategy profile 5 = (s1,....s,) is a subgame perfect game Nash
equilibrium if and only if s is a Nash equilibrium in every subgame of the repeated
game.

[Blev (6,%)

Theorem (One-stage deviation principle)

5 is a subgame pe ilibrium (SPNE) if and only if at every iy and
every history and every player i, player i caunoLugfif by deviating just at time t and
following the strategy s| from time t + 1 on

* (€S




Theorem (One-stage deviation principle)
5 is 2 subgam, Lash equiibrium (SPNE) if and only if at every Jiggat, and
e b rstoLry and every player i, player i q-')m.g; Ligfi} by deviating just at time t and

following the strategy s/ from time t + 1 on
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> This is extremely useful since we only need to check that s; is optimal against all
possible one-stage deviations rather than having to check that it is optimal
against all s/

> This is extremely useful since we only need to check that s; is optimal against all

possible one-stage deviations rather than having to check that it is optimal

against all s/

> We will now put this into practice to analyze subgame perfect Nash equilibria of
infinitely repeated games
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Examples

»> Lets go back to the infinitely repeated prisoner's dilemma

> Lets go back to the infinitely repeated prisoner's dilemma

> What is an example of a subgame perfect Nash equilibrium?

Blev 6



> Lets go back to the infinitely repeated prisoner’s dilemma
> What is an example of 2 subgame perfect Nash equilibrium?

> One kind of equilibrium should be straightforward: each player plays Dy and Dy
always at all information sets

> Lets go back to the infinitely repeated prisoner's dilemma
> What is an example of a subgame perfect Nash equilibrium?

> One kind of equilibrium should be straightforward: each player plays Dy and Ds
always at all information sets

» Why is this a SPNE?

> Lets go back to the infinitely repeated prisoner’s dilemma
b

> What is anlsxampl;cf a subgame perfect Nash equilibrium? v}
(€

» One kind of equilibrium should be straightforward: each player plays Dy and D,
= O

always at all information sets

» Why is this a SPNE? bL

> We can use the one-stage deviation principle

\/(}6) - fg O= O\ SHPATZACIOU

€=0
- DesV
V@eswo ==L+ E‘go“"\ en €=0

44‘ e @ lDl

S —v WeAR
EY Ew Vg

[ ——

"o ?A'SAJDO -(vO T Z & O VWDO

puTviZO =

> Under this strategy profile s{, s, for all histories hf, e E ( 0 D o

Vi(st,s | h) = Va(si, s | h) = 0. P e A\

P

\[@o Desv

. - Ui - As & +—| ¥ QO Vb'twbo-
\l@e;\h\- \J T VFU‘ 20 bo e%

=3

> Under this strategy profile s, s3, for all histories A,

Va(si, 5 | ) = V(s s | h) = 0.

» Thus, for all histories Af, D
5Dy, D) +8 Vi(st 53 | 1) > ui( G D_) +6 Vi(si. s | B)
\/?Aswo = pASK!

» Under this strategy profile st, s3, for all histories hf,

Vi(st, 3 | h') = Va(si. s | h') = 0.

» Thus, for all histories h*,

u(D;, D) 48 Vilst, 55 | K) > ui( G, D)+ Vi(si. 55 | 1)
0 0 1 0

Thus, (s, s4) is a SPNE




> Under this strategy profile s;, s, for all histories A,

Va(si,s3 | hf) = Va(si, 3 | ') = 0

» Thus, for all histories A*,

(D, D) 48 Vilst, 55 | K) > (G, Do)+ Vi(si. 55 | 1)
B E g D> G2 s 1)

0 0 0

Thus, (sj.s}) is a SPNE

In fact this is not specific to the prisoner’s dilemma as we show below:

Theorem
Let a* be a Nash equilibrium of the stage game. Then the strategy profile s* in which

all players i play a at all information sets is a SPNE for any § < [0,1).

» What other kinds of SPNE are there?

» What other kinds of SPNE are there?

» In finitely repeated games, this was the only SPNE with prisoner’s dilemma since
the stage game had a unique Nash equilibrium

» What other kinds of SPNE are there?

> In finitely repeated games, this was the only SPNE with prisoner's dilemma since
the stage game had a unique Nash equilibrium

» When the repeated game is infinitely repeated, this is no longer true

> Consider for example the grim trigger strategy profile that we discussed earlier.

Each player plays the followin




> Consider for example the grim trigger strategy profile that we discussed earlier.
Each player plays the following strategy:

e [G iR =(C.C..\C)
5’("‘)’{0, it ht #(C,C,...,C).

> We will show that if & is sufiiciently high, so that the players are sufficiently
patient, the strategy profile of grim trigger strategies is indeed a SPNE

Consider for example the grim trigger strategy profile that we discussed carlier.
Each player plays the following strategy:

— [G fr=(C.C.....0)
ls’//[a*{o, if ht £ (C.C,...,C)
e —

We will show that if & is sufiiciently high, so that the players are sufficiently
patient, the strategy profile of grim trigger strategies is indeed a SPNE ,
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The equilibrium path of play for this SPNE is for players to play C in every period = 7S
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> We use the one-stage deviation principle again

v

How do we show that the above is indeed an SPNE?

» How do we show that the above is indeed an SPNE?
> We use the one-stage deviation principle again

> We need to check the one-stage deviation principle at every history hf
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Case 1:

» Suppose first that h* # (C.C..... q)

> Players are each suppose to play D;
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» Suppose first that ht # (C.C,...,C)

> Players are each suppose to play D;

Case 1:
> Suppose first that f # (C.C,....C)
> Players are each suppose to play D;
> Thus, we need to check that

ui(D;, D_j) + 8Vi(s" | (4, D))
> ui(Gy D-j) +6Vi(s" | (K, (G, D-)))

Case 1:

v

Suppose first that At # (C,C....,C)
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Players are each suppose to play D;
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Thus, we need to check that

ui(Dy, D) 1 8Vi(s* | (4, D))
= ui(G, D) +8Vi(s™ | (h,(C;, D7)
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But since ht # (C, C,..., C),
Vi(s® | (h', D)) = Vils™ | (K, (G, D-))) = (L, D).

Case 1:
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Suppose first that A # (C,C. ..., C)
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Players are each suppose Lo play D;
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Thus, we need to check that

ui(D, D_j) + 8Vi(s" | (4. D))
2 ui( G D) +8Vi(s™ | (#,(Ci D-1)))
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But since ht # (C,C,...,
Vi(s* | (b, D)) = Vi(s" | (K.(Gi, D)) = 4(D;, D).

So the above inequality is satisfied if and only if

<),
K,

v

u(D1. D) 2 (D).

Case 1:
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Suppose first that A # (C, C...., C)

Players are each suppose to play D;

v
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Thus, we need to check that

ui(D;, D)+ 6Vi(s* | (h', D))
2 ui( G, D)+ 8Vi(s™ | (H,(Ci, D))

v

But since ht # (C,C,..., C),
Vi(s™ | (D)) = Vi(s" | (K. (G D_1))) = ui(Di, D).

So the above inequality is satisfied if and only if
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(i, D) 2 u(Ci. D).
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Case 2:
> Suppose instead that hf = (C,C.....C)

But this is satisfied since D is a Nash equilibrium of the stage game
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Case 2:
» Suppose instead that h* = (C,C...., €)
> Players are both supposed to play C;

Case 2:
» Suppose instead that h = (C.C..... €)
» Players are both supposed to play G
> Thus, we need to check that
u(G, Cj) +8Vi(s* | (. C))
> u(Dy, Ci) + 6Vi(s" | (W', (Dr, C1))-

Case 2:
» Suppose instead that At = (C, C.
» Players are both supposed to play C;

» Thus, we need to check that

(G, C) +8Vi(s™ | (7, C))

2 (D), Ci) + V(s | (W (D1 C-0)))-
> In this case,

ViCs" | (8, ©)) = u( G, C1)
=L V(s | (H.(D C1)) = (D) = 0.

Case 2:
» Suppose instead that h' = (C.C,....
> Players are both supposed to play C;
» Thus, we need to check that

U(G. L)+ V(s | (K.C))
= u(Dy, Coi) + 6Vi(s™ | (W', (Dr, C))).

» In this case,

Vi(s® | (0, €)) = ui( G, C7)
=1,Vi(s" | (h*.(D;, C1))) = u(D) = 0.
» Therefore, the above is satisfied if and only if
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Case 2:
» Suppose instead that h* = (C, C.,.... C)
> Players are both supposed to play G
> Thus, we need to check that
(G Cp) + 8Vi(s* | (K, ©))
= ui(Dy, Ci) + SVi(s" | (b, (D1, C1)))-
» In this case,
Vils* | (k. C)) = ui(Gi, Ci)
— L V(s | (h (D1, C1))) = (D) = 0.
» Therefore, the above is satisfied if and only if

146224 35>1/2

> Thus the grim trigger strategy profile s* is a SPNE if and only if § > 1/2.

» The above findings that SPNE may involve the repetition of action profile that is
not a stage game NE is not specific to just the infinitely repeated prisoner's
dilemma as the following theorem demonstrates.

Theorem (Foli egia)
Suppose that a2 i sh equilibrium of the stage game. Suppose that 3 is an action
profile of the Nash equilibrium such that =

(@) > 0103, Un(3) > uala").

Then there is someuiimgul tich that whenever 4t there is a SPNE in which on

the equilibrium path of play, all players play 4

in every period. o
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