+1 EN \rightarrow Varac Casos.

\qquad

Soblid

Exhoneri besmatione

Prisoner's Diemma
C_{1} C_{2} D_{2} D_{1} 1,1 $-1,2$ $2,-1$ 0.0

- For example, if the stage game is the prisoner's dilemma, at period 1 , there are 4
possible histories:
$\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}$.
- For time t, H^{t} consists of 4^{t} possible histories

$\left\{\left(C_{1}, c_{2}\right),\left(C_{1}, 0_{1}\right)\left(O_{1}, c_{2}\right),\left(0_{1}, 0_{2}\right)\right\}=H^{4}$

As.


```
Masmen
M~OSO-Por-OSO
```



```
        \sum\sum=umb
```


\qquad

- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2}
always at all information sets
\qquad
\qquad
-What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2}
always at all information sets
- Why is this a SPNE?

- Under this strategy profile s_{1}^{*}, s_{2}^{*}, for all histories h^{t},
$V_{1}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=V_{2}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=0$.
- Under this strategy profile s_{1}^{*}, s^{*}, for all histories h^{t},
$V_{1}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=V_{2}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=0$,
$\underbrace{u_{i}\left(D_{i}, D_{-i}\right)}_{0}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}>\underbrace{u_{i}\left(C_{i}, D_{-i}\right)}_{-1}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}$

$$
V_{\text {PASADU }}^{N D}=V_{\text {PASADO }}^{D}
$$

- Thus,

\square

$$
\begin{aligned}
& \text { ho (} 46,-, C)=140 \% 2 \\
& V_{N D}=\sum_{t \in-0}^{\infty} V_{i}\left(C_{i}, C_{-i}\right) \delta^{t}=V_{i}\left(C_{i},(-i) \sum_{t=0}^{\infty} \delta^{t}=\underline{V_{i}\left(C_{i},(-i)\right.} \frac{1}{1-\delta}=\frac{1}{1-\delta}\right.
\end{aligned}
$$

\qquad
\qquad

$\begin{aligned} & \text { Case 1: } \\ & \text { - } \text { Suppose first that } h^{t} \neq(C, C, \ldots, C) \\ & \text { - } \text { Players are each suppose to play } D_{i} \\ & \text { - } \text { Thus, we need to check that } \\ &$\[

\]$u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right) \\ & \quad \geq u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right) \\ & \rightarrow \text { But since } h^{t} \neq(C, C, \ldots, C), \\ & V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right) .\end{aligned}$

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}
- Thus, we need to check that
- Thus, we need to check that

$$
u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{\mathrm{t}}, D\right)\right)
$$

- But since $h^{t} \neq(C, C, \ldots, C)$.
- So the above inequality is satisfied if $)=u_{i}\left(D_{i}, D_{-}\right)$
$u_{i}\left(D_{i}, D_{-i}\right) \geq u_{i}\left(C_{i}, D_{-i}\right)$.

Case 1:

- Players are each suppose to play D_{i}

Thus, we need to check that
But since $h^{t} \neq\left(u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)\right.$
$V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right)$.
So the above inequality is satisfied if and only if
$u_{i}\left(D_{i}, D_{-i}\right) \geq u_{i}\left(C_{i}, D_{-i}\right)$

- But this is satisfied since D is a Nash equilibrium of the stage game

$$
\begin{aligned}
& V_{N D} \geqslant V_{D E S V} \\
& \frac{1}{1-\delta} \geqslant 2 \\
& 1 \geqslant 2-2 \delta \\
& 2 \delta \geqslant 1 \\
& 8 \geqslant \frac{1}{2}
\end{aligned}
$$


```
*)
```



```
    \)
    *)
M
Cosemem,
```



```
    * mutasese=
```



```
*)
1)No Dice Cumio es S
```

