nursoay, April 29, 2021 2:21 PM	(GTI) FI	NITC
ecture 19	LASI EN-	DEPS-DEN VE.
	-+1 EN_	-> VARIO (ASA)
	-	r mos chors,
Lecture 10:	Infinitely Repeated Cames	
Lecture 15.	Mauricia Romana	
Lasture 10: Infinitely Penested Com	(D) (Ø) (2) (2) (040
Lecture 19: Infinitely Repeated Gam	es	
Introduction to Infinitely Repeated	Games	
Lecture 19: Infinitely Repeated Gam	(0)(0)(2)(2)(2)(3)	940
Introduction to Infinitely Repeated	Games	
	(D) (Ø) (2) (2) (940 S
 One of the features of finitely unique Nash equilibrium, ther repetition of that unique stage 	repeated games was that if the stage game had an the only subgame perfect Nash equilibrium was the game Nash equilibrium	ne
	(0) (0) (3) (3)	040 \$
		<u> </u>
One of the features of finitely	repeated games was that if the stage game had a	

This happened because there was a last period from which we could induct backwards (and there was a domino effect!)

 One of the features of finitely repeated games was that if the stage game had a unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium

 This happened because there was a last period from which we could induct backwards (and there was a domino effect!)

When the game is instead infinitely repeated, this argument no longer applies since there is no such thing as a last period

(ロ)(の)(2)(2)(2) まの

Lets first define what an infinitely repeated game is

101101121121121

Lets first define what an infinitely repeated game is

▶ We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n

(0) (2)

Lets first define what an infinitely repeated game is

 \blacktriangleright We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n

Each player i has an action set A_i

< (2)< (2)

Lets first define what an infinitely repeated game is

▶ We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n

Each player i has an action set A_i

▶ In each period $t = 0, 1, 2, ..., players simultaneously choose an action <math>a_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players

· □ · · Ø · · 注 ·

Lets first define what an infinitely repeated game is

• We start with a stage game whose utilities are given by u_1, u_2, \ldots, u_n

Each player i has an action set A_i

▶ In each period $t = 0, 1, 2, ..., players simultaneously choose an action <math>\underline{a}_i \in A_i$ and the chosen action profile $(a_1, a_2, ..., a_n)$ is observed by all players

 \blacktriangleright Then play moves to period t + 1 and the game continues in the same manner.

101101121121

▶ It is impossible to draw the extensive form of this infinitely repeated game

 $\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$

▶ For time t, H^t consists of 4^t possible histories

For example, if the stage game is the prisoner's dilemma, at period 1, there are 4 possible histories:

 $\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$

For time t, H^t consists of 4^t possible histories

This means that there is a **one-to-one** mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree

► For example, if the stage game is the prisoner's dilemma, at period 1, there are 4 possible histories:

 $\{(C_1, C_2), (C_1, D_2), (D_1, C_2), (D_1, D_2)\} = H^1.$

What is a strategy in an infinitely repeated game?

What is a strategy in an infinitely repeated game?

It is simply a prescription of what player i would do at every information set or history

What is a strategy in an infinitely repeated game?

It is simply a prescription of what player i would do at every information set or

Therefore, it is a function that describes:

 $s_i : \bigcup_{t \ge 0} H^t \rightarrow A_i.$

 \blacktriangleright As a result, we can think of each $h^t \in H^t$ as representing a particular information set for each player i in each time t

For time t, H^t consists of 4^t possible histories

This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree

 How are payoffs determined in the repeated game? Suppose the strategies s₁,, s_n are played which lead to the infinite sequence of action profiles: a⁰, a¹,, aⁱ, aⁱ⁺¹, Then the payoff of player <i>i</i> in this repeated game is given by: ∑_{i=0}[∞] bⁱw(aⁱ) = U_{EC}(aⁱ) t U_{EC} t t Intuitively, the contribution to payoff of time <i>t</i> action profile a^t is discounted by bⁱ 	S-D S-D	PEOB DE Subuertos	G. Maña <i>na</i>
► It may be unreasonable to think about an infinitely repeated game			
(日)(月)(年)(月) 妻 (1)(
 It may be unreasonable to think about an infinitely repeated game However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time. 			
 It may be unreasonable to think about an infinitely repeated game However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time. Thus, an infinitely repeated game does not necessarily represent a scenario in which there are an infinite number of periods, but rather a relationship which ends in finite time with probability one, but in which the time at which the relationship ends is uncertain 			
(0) (<i>d</i>) (2) (2) 2 0(0			
► Lets see some examples of how to compute payoffs in the repeated game			

Lets see some examples of how to compute payoffs in the repeated game

• Consider first the strategy profile in which $s_i(h^t) = C_i$ for all i = 1, 2 and all h^t .

Lets go back to the infinitely repeated prisoner's dilemma

What is an example of a subgame perfect Nash equilibrium?

VEASADO ~

 Thus, for all histories h^t, $\underbrace{u_i(D_i,D_{-i})}_0 + \delta\underbrace{V_i(\mathbf{s}_1^*,\mathbf{s}_2^*\mid h^t)}_0 > \underbrace{u_i(C_i,D_{-i})}_{-1} + \delta\underbrace{V_i(\mathbf{s}_1^*,\mathbf{s}_2^*\mid h^t)}_0$

 $V_1(s_1^*, s_2^* \mid h^t) = V_2(s_1^*, s_2^* \mid h^t) = 0.$

 \blacktriangleright Under this strategy profile $s_1^*, s_2^*,$ for all histories $h^t,$

Thus, (s_1^*,s_2^*) is a SPNE

In fact this is not specific to the prisoner's dilemma as we show below:

Theorem Let z^* be a Nash equilibrium of the stage game. Then the strategy profile s^* in which all players i play a_i^* at all information sets is a SPNE for any $\delta \in [0, 1)$.

What other kinds of SPNE are there?

What other kinds of SPNE are there?

In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium

What other kinds of SPNE are there?

In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium

 \blacktriangleright When the repeated game is infinitely repeated, this is no longer true

 Consider for example the grim trigger strategy profile that we discussed earlier Each player plays the following strategy: $s_i^*(h^t) = \begin{cases} C_i & \text{if } h^t = (C, C, \dots, C) \\ D_i & \text{if } h^t \neq (C, C, \dots, C). \end{cases}$ We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE RESULTADO AsouADD Consider for example the grim trigger strategy profile that we discussed e Each player plays the following strategy: $\mathbf{s}_i^*(h^t) = \begin{cases} C_i & \text{if } h^t = (C, C, \dots, C) \\ D_i & \text{if } h^t \neq (C, C, \dots, C). \end{cases}$ We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE DOBSETINO: NO HAY INCENTIVOS A DESV. path of play for this SPNE is for players to play C in ev do we show that the above is indeed an he=(C,C,...,C)CASO#1 $V_{\text{DESV}} = V_{i}(c_{i}, D_{i}) + \sum_{t=1}^{\infty} U_{i}(D_{i}, D_{-i}) S' = -1 + U(D_{i}, D_{-i}) \left[\sum_{t=1}^{\infty} S^{t} - 1 + U(D_{i}, D_{-i}) S = -1 + O \cdot S - 1 - S - 1 + O \cdot S - 1 - S - 1 + O \cdot S - 1 - S - 1 + O \cdot S - O \cdot S - 1 + O \cdot S - O \cdot S - 1 + O \cdot S - O \cdot S - 1 + O \cdot S - O \cdot S - 1 + O \cdot S - O \cdot S - 1 + O \cdot S - O \cdot S -$ How do we show that the above is indeed an SPNE We use the one-stage deviation principle again ASO #2 How do we show that the above is indeed an SPNE We use the one-stage deviation principle again We need to check the one-stage deviation principle at every history h $V_{ND} = \sum_{t=0}^{\infty} V_i(c_i, (-i)) = V_i(c_i, (-i)) = \sum_{t=0}^{\infty} \frac{V_i(c_i, (-i))}{1 - 5} = \frac{1}{1 - 5}$ Case 1 Suppose first that $h^t \neq (C, C, \dots, C)$ $V_{Desv} = \frac{V_i(D_i, C_i)}{V_i(D_i, D_i)} + \sum_{\underline{FI}}^{\infty} \frac{V_i(D_i, D_i)}{V_i(D_i, D_i)} + \frac{S}{S} = Z + \frac{V_i(D_i, D_i)}{V_i(D_i, D_i)} + \frac{V_i(D_i, D_$ Case 1: ▶ Suppose first that $h^t \neq (C, C, ..., C)$ T+1
 hex(C, --7C
 Players are each suppose to play D

Case 1		
•	Suppose first that $h^t \neq (C, C, \dots, C)$	
•	Players are each suppose to play D_i	
		(D) (B) (2) (B) (B)
Case 1	:	
•	Suppose first that $h^t \neq (C, C, \dots, C)$	
•	Players are each suppose to play D _i	
•	Thus, we need to check that	
	$u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$	
	$\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^\epsilon, (C_i, D_{-i}))$)
		(D) (B) (2) (2) (2)
Case 1	1	
	Suppose first that $h^t \neq (C, C, \dots, C)$	
	Players are each suppose to play D _i	
	Thus, we need to check that	
	$u_i(D_i, D_{-i}) + \delta V_i(s^* (h^t, D))$	
	$\geq u_i(C_i, D_{-i}) + \delta V_i(s^* (h^t, (C_i, D_{-i})))$)
	But since $b^t \neq (C, C, \dots, C)$	
	$V_i(s^* (h^t, D)) = V_i(s^* (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i}).$	
Case 1		
•	Suppose first that $h^t \neq (C, C, \dots, C)$	
•	Players are each suppose to play D _i	
•	Thus, we need to check that	
	$u_i(D_i, D_{-i}) + \delta V_i(s^* \mid (h^t, D))$,
	$\geq u_i(C_i, D_{-i}) + \delta V_i(s^* \mid (h^*, (C_i, D_{-i})))$)
•	But since $h^t \neq (C, C, \dots, C)$,	
	$V_i(s^* \mid (h^t, D)) = V_i(s^* \mid (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i}).$	
	So the above inequality is satisfied if and only if	
	$u_i(D_i, D_{-i}) \geq u_i(C_i, D_{-i}).$	
		a
Case 1		
	Suppose first that $h^t \neq (C, C,, C)$	
	Players are each suppose to play D _i	
	Thus, we need to check that	
	$u_i(D_i, D_{-i}) + \delta V_i(s^* (h^*, D))$ > $u_i(C_i, D_{-i}) + \delta V_i(s^* (h^t, (C_i, D_{-i}))$)
		-
•	Dut since $h^* \neq (L, L,, L)$, $V_i(s^* (h^t, D)) = V_i(s^* (h^t, (C_i, D_{-i}))) = u_i(D_i, D_{-i})$.	
•	So the above inequality is satisfied if and only if	
	$u_i(D_i,D_{-i})\geq u_i(C_i,D_{-i}).$	
	But this is satisfied since D is a Nash equilibrium of the stage	e game
	but this is setalled since b is a reast equilibrium of the stag	0.000 (2002) \$ -
Case 2	:	
•	Suppose instead that $h^t = (C, C, \dots, C)$	

hex (C, -- 7 C)

 $V_{ND} > V_{DESV}$ L > Z L > Z L > Z ZSZ L

871

2

Γι

 Suppose inste Players are bo 	ad that $h^{t} = (C, C, \dots, C)$ th supposed to play C_{i}	
	· C · · (P · · 2 · · 3 · 2 · 05.0	
ase 2:		
 Suppose inste Players are bo 	ad that $h^t = (C, C, \dots, C)$ th supposed to play C_i	
Thus, we need	d to check that	
	$u_i(C_i, C_{-i}) + \sigma V_i(s \mid (n^*, C_j)) \\\geq u_i(D_i, C_{-i}) + \delta V_i(s^* \mid (h^*, (D_i, C_{-i}))).$	
	101 (0) (2) (2) 2 040	
ase 2:		
 Suppose inste Players are broken in the second second	ad that $h^t = (C, C, \dots, C)$ th supposed to play C_i	
 Thus, we need 	d to check that	
	$u_i(C_i, C_{-i}) + \delta V_i(s^* (h^t, C)) \geq u_i(D_i, C_{-i}) + \delta V_i(s^* (h^t, (D_i, C_{-i}))).$	
In this case,		
	$V_i(s^* \mid (h^t, C)) = u_i(C_i, C_{-i}) \\= 1, V_i(s^* \mid (h^t, (D_i, C_{-i}))) = u_i(D) = 0.$	
	10-10-12-12-2 030	
ase 2:		
 Suppose inste Players are bo 	ad that $h^t = (C, C, \dots, C)$	
Thus, we need	d to check that	
	$u_i(C_i, C_{-i}) + \delta V_i(s^* (h^*, C)) \\ \ge u_i(D_i, C_{-i}) + \delta V_i(s^* (h^*, (D_i, C_{-i}))).$	
In this case,	$V(c^{-1})(B_{c}(c)) = v(C_{c}(c_{c}))$	
	$ v_{i}(s \mid (n, C)) = u_{i}(C_{i}, C_{-i}) $ = 1, $V_{i}(s^{*} \mid (h^{t}, (D_{i}, C_{-i}))) = u_{i}(D) = 0. $	
Therefore, the	e above is satisfied if and only if $1 + \delta \ge 2 \longleftrightarrow \delta \ge 1/2$	
ase 2:		
 Suppose inste Players are bo 	ad that $h^t = (C, C, \dots, C)$ th supposed to play C_i	
Thus, we need	d to check that $w(C, C, x) + \delta V(e^{x} + (x^{1}, C))$	
	$u_i(\forall i, \forall c_{-i}) + v_i(\mathbf{s} + (t^*, C)) \\ \geq u_i(D_i, C_{-i}) + \delta V_i(\mathbf{s}^* \mid (h^t, (D_i, C_{-i}))).$	
In this case,	$V(c^* \mid (b^* \cap)) = w(C, \cap)$	
	$ = 1, V_i(s^* (h^t, C_i) - u_i(v_i, C_{-i})) = 1, V_i(s^* (h^t, (D_i, C_{-i}))) = u_i(D) = 0. $	
 Therefore, the 	above is satisfied if and only if $1 \pm \delta > 2 \iff \delta > 1/2$	
 Thus the grin 	h trigger strategy profile s [*] is a SPNE if and only if $\delta \ge 1/2$.	
	Provide CDUP	
The above fin not a stage ga dilemma as th	ddngs that SPNE may involve the repetition of action profile that is ame NE is not specific to just the infinitely repeated prisoner's the following theorem demonstrates.	
Theorem (Folk th		
Suppose that a [*] is profile of the Nash	a <u>a vasn equilibrium</u> of the stage game. Suppose that ä is an action equilibrium such that	
Then there is som	$u_1(\hat{a}) > u_1(a^*), \dots, u_n(\hat{a}) > u_n(a^*).$	
the equilibrium pa	th of play, all players play à in every period.	
v v v	YICE LUAMO E> O	