Lecture 2
Thursday, January 14, 2021 8:58 AM

Lecture 2: General Equilibrium

Mauricio Romero
lecture 2: General Equilibrium

Cobb-Douglas
Perfect substitutes
Perfect complements

Cobb-Douglas

$$
\begin{aligned}
u^{A} & =x^{\alpha} y^{1-\alpha} \\
\operatorname{MRS}_{x, y}^{A} & =\frac{\partial^{A} / \partial x}{\partial v^{A} \partial y}=\frac{\alpha x^{\alpha-1} y^{1-\alpha}}{(1-\alpha) x^{\alpha} y^{-\alpha}}=\frac{\alpha}{1-\alpha} \frac{y^{(1-\alpha-(\alpha))}}{x^{(\alpha-(\alpha-1))}}=\frac{\alpha}{1-\alpha} \frac{y_{A}}{x_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& x^{A}+x^{B}=2 \\
& y^{A}+y^{B}=2
\end{aligned}
$$

Cobb-Douglas
But we have
But we haven't used the fact that

$$
\begin{aligned}
& x^{A}+x^{B}=\omega_{x} \\
& y^{A}+y^{B}=\omega_{y}
\end{aligned}
$$

Cobb-Douglas

$$
\alpha y^{4}=\frac{B\left(w_{\left.y-y^{1}\right)}^{A}\right)}{n^{1}}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right)
\end{gathered}
$$

Cobb-Douglas
But we haven't used the fact that
$x^{A}+x^{B}=\omega_{x}$
$\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}$

$$
y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right)
$$

$$
y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{aligned}
& x^{A}+x^{B}=\omega_{x} \\
& y^{A}+y^{B}=\omega_{y}
\end{aligned}
$$

$$
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}
$$

$$
y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right)
$$

$$
\begin{aligned}
& y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}} \\
& \text { Then: }
\end{aligned}
$$

Then:

$$
\grave{y^{A}}=\frac{(1-\alpha) \beta \omega_{y} x^{A}}{\alpha w_{x}-\alpha x^{A}-\alpha \beta w_{x}+\beta x^{A}}
$$

$$
\begin{aligned}
& \frac{\alpha}{1-\alpha} \frac{y^{4}}{x^{1}}=\frac{\beta}{1-\beta} \frac{\left(\omega y-y^{4}\right)}{\left(\omega x-x^{4}\right)} \\
& \alpha(1-\beta) y^{\prime}\left(\omega_{x}-x^{\prime}\right)=(1-\alpha)^{\beta} x^{\prime}\left(\omega_{y}-y^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha y^{A} \omega_{x}-\alpha y^{A} x^{A}-\alpha \beta y^{A} \omega_{x}+y^{A} \beta x^{A}=\beta x^{A} \omega_{y}-\alpha \beta x^{A} \omega_{y} \\
& y^{A}\left(\alpha W_{x}-\alpha x^{A}-\alpha \beta W_{x}+\beta x^{A}\right)=\beta x^{A} W_{y}-\alpha \beta x^{A} W_{y} \\
& V^{A}=\frac{x^{A}\left(\beta \omega_{y}-\alpha \beta^{\omega y}\right)}{\alpha \omega_{x}-\alpha x^{A}-\alpha \beta \omega_{x}+\beta x^{A}}
\end{aligned}
$$

Cobb-Douglas
\rightarrow Curva Contraio optimos Pareto \rightarrow iniercambios Voluntarios

Lecture 2: General Equilibrium

Using calculus
Perfect substitutes

Using calculus

Essentially in this exercise we are doing the following: $\left.\sqrt{\left(x^{A}, y^{A}\right) \cdot\left(x^{B}, y^{B}\right)}\right]^{u_{A}\left(x^{A}, y^{A}\right)}$ such that

Intuition

Suppose that we are at an allocation where
$M R S_{x, y}^{A}=2>M R S_{x, y}^{B}=1$. Can we make both consumers better

- A gives up 1 unit of y to person B in exchange for unit of x
- B is indifferent since his $M R S_{x, y}^{B}=1$.
- A receives a unit of x and only needs to give one unit of y (he was willing to give two)
- We have reallocated goods to make A strictly better off without hurting B
-". (Ingontes, Lblenes)

General case

Theorem
Suppose that all utility functions are strictly increasing and
quasi-concave. Suppose also that $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is
a feasible interior allocation. Then $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$
is Pareto efficient if and only if $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$
$\frac{x h a u s t s \text { all resources and for all pairs of goode } \ell, \ell,)}{M R S_{\ell, e^{\prime}}^{1}\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right)=\cdots=M R S_{\ell, \ell^{\prime}}^{\prime}\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right) .}$

- Utility functions must be strictly increasing, quasi-concave and differentiable!

Lecture 2: General Equilibrium

Cobb-Douglas
Perfect substitutes

Perfect substitutes

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

