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Lecture 2: General Equilibrium

Using calculus

Using calculus

Essentially in this exercise we are doing the following:
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Theorem
Consider an Edgeworth Box economy and suppose that ail
consumers have strictly monotone uiliy functions. Then a feasbe

Jw is Pareto efficient if and only if it
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> We need to assume all consumers have quasi-concave, stritly X%_: W

monotone, differentiable utility functions
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> Very tempting to use lagrangeans, no?

> We need to assume all consumers have quasi-concave, strictly X%_\ (V2
monotone, differentiable utilty functions A XB
Then we can solve: A \5 w\i -
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Lets take the first order conditions of the above problem.
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Suppose that both consumers have utilty functions that are \)|ca) C/

quasi-concave and strictly increasing. Suppose that
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Intuition
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Intuition

Suppose that we are at an allocation where
MRS, =2 > MRSE, = 1. Can we make both consumers better
off?
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> A gives up 1 unit of y to person B in exchange for unit of x
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> Bis indifferent since his MRS, = 1.

> A receives a unit of x and only needs to give one unit of y (he
was willing to give two)

> We have reallocated goods to make A strictly better off
without hurting B
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General case

Theorem
Suppose that all tility functions are strictly increasing and
quasi-concave. Suppose also that ((ir,Liﬂ_l" g) is
FTeasible imterior allocation. Then ((1,....%, &L

is Paretc eeient if and only if ((31,.... %1,

exhausts all resources and for all pe L
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> Utility functions must be strictly increasing, quasi-concave.
’ strictly nereasing. quasconaus:
and differentiable!
LUCEIEEGY

Lecture 2: General Equilibrium

Perfect substitutes

Suppose that
e y*) =2+ 4
us(x®,y®) = +y®
wh=(1,1)
wE=(1,1)

Perfect substitutes
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Perfect complements
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Perfect complements

Suppose that
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Make A as well as we can without making B worse off
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> Tiy it at home!

Recap

> We expect all exchanges to happen on the contract curve

(hence its name)
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> We expect all voluntary exchanges to be in the orange

> Can we say more? Not without priges|



