Lecture 4

Thursday, January 21, 2021 2:07 PM

Lecture4	
Lecture 4: General Equilibrium	
Mauricio Romero	
(D) (B) (E) (E) E 040	
Lecture 4: General Equilibrium	
Is there always an equilibrium?	
Is the equilibrium unique?	
First welfare theorem	
Second welfare theorem	
(D) (B) (Z) (Z) Z (Q)	
Lecture 4: General Equilibrium	
Is there always an equilibrium?	
(D) (B) (3) (3) (3) (3)	
The answer is going to be yes in general	
	f(x) = X
We will show that the equilibrium is a "fix point" of a certain function	SURASTADOR"
Intuitively, if we have a function that adjusts prices (higher	Isose more
price is demand > supply), then the equilibrium is where this function stops updating	
(ロ) (日) (日) (日) (日) (日)	1(1)=[

(D) (Ø) (2) (2) 2 00

Excess demand Z(p) has the following properties $Z(P) = (Z_1(P), ..., Z_L(P))$ H(0)= = X(0)- = we 1. Is continuous in ρ LOSIEMPREY (VANDO X. (P) SEA G I. 2. Is homogeneous of degree zero 2(XP)= 2(P) Pi-Z (P)+ P2Z (P)+0 3. $p \cdot Z(p) = 0$ (this is equivalent to Walra's law) $\forall P \begin{pmatrix} ASI \\ SEA \end{pmatrix} D \in EC \end{pmatrix}$ $P_1 Z(p) + P_2 Z(p) + \dots + P_L Z(p) = 0$ Deficit iercual Excess demand Z(p) has the following properties 1. Is continuous in p 2. Is homogeneous of degree zero 3. $\rho \cdot Z(\rho) = 0$ (this is equivalent to Walra's law) — Think about this! Excess demand We said we want to update prices in a "logical" way. If excess demand is positive, then increase prices... $\begin{array}{l} \mathcal{H}_{\mathcal{P}}^{p) \times} & \mathcal{P} + \mathcal{Z}(\mathcal{P}) \\ = \left(\mathcal{P}_{i} + \mathcal{E}_{i}(\mathcal{P}), \ \mathcal{P}_{L} + \mathcal{E}_{L}(\mathcal{P}), \ \mathcal{P}_{L} + \mathcal{E}_{L}(\mathcal{P}) \right) \end{array}$ = (P,+ hax (2.(2),0), P2+ Max (2(P),0), ..., PL+ max (2(P),0)) T(P)= (P1+ HAX(6,0), R+ HAY(6,0), 1..., PL+ Mo-(24,0)) 2 Pe+ MAX (24,0) Excess demand We said we want to update prices in a "logical" way. If excess demand is positive, then increase prices. p'=p+Z(p)But what if p' < 0? Ok then $T(p) = \frac{1}{\sum_{i=1}^{L} p_i + \max(0, Z_i(p))} (\rho_1 + \max(0, Z_1(p)),$ $\max\left(0, Z_2(p)\right), \ldots,$ $p_1 + \max(0, Z_1(p)))$ Excess demand $\frac{1}{\overline{P}} \stackrel{e}{}_{\text{FS}} \stackrel{VN}{=} EG \qquad T(\overline{P}) \stackrel{e}{=} \left(\underbrace{P_{1}^{*} + \max(\overline{e_{1,0}})}_{\overline{E}}, \ldots, \underbrace{P_{k} + \max(\overline{e_{k,0}})}_{\overline{E}} \right) \stackrel{e}{=} \left(\underbrace{P_{1}^{*}, \ldots, P_{k}^{*}}_{\overline{E}} \right)$ I is continuous Thus we can apply the fix point theorem • Therefore there exists $a \left[p^{*} \right]$ such that $T(p^{*}) = p^{*}$ Then $Z(p^2) = 0^{-1} \left(\overline{2} \overline{z}^{20}, \overline{z} \overline{z}^{20}, -, \overline{z} \overline{z}^{20} \right)$

Weird case - no equilibrium

 $u_{A}(x^{A}, y^{A}) = \min(x^{A}, y^{A})$ $u_{B}(x^{B}, y^{B}) = \max(x^{B}, y^{B})$ $\omega^{A} = (1, 1)$ $\omega^{B} = (1, 1)$

- prices are positive (why?)
- normalize $p_x = 1$
- \blacktriangleright if $p_y < 1$ then B wants to demand as much of y as possible $Y^b = \frac{1}{p_y} + 1$

(D) (D) (2) (2) 2 000

Weird case - no equilibrium

 $u_A(x^A, y^A) = \min(x^A, y^A)$ $u_B(x^B, y^B) = \max(x^B, y^B)$ $\omega^A = (1, 1)$ $\omega^B = (1, 1)$

- prices are positive (why?)
- ▶ normalize $p_x = 1$
- if $p_y < 1$ then B wants to demand as much of y as possible $Y^b = \frac{1}{p_y} + 1$
- if $p_y > 1$ then *B* wants to demand as much of *x* as possible $X^b = p_y + 1$

Weird case - no equilibrium

 $u_A(x^A, y^A) = \min(x^A, y^A)$ $u_B(x^B, y^B) = \max(x^B, y^B)$ $\omega^A = (1, 1)$ $\omega^B = (1, 1)$

- prices are positive (why?)
- normalize $p_x = 1$
- \blacktriangleright if $p_y < 1$ then B wants to demand as much of y as possible $Y^b = \frac{1}{p_y} + 1$
- if $p_y > 1$ then *B* wants to demand as much of *x* as possible $X^b = p_y + 1$
- if p_y = 1 then B either demands two units of X or two units of Y, but A demands at least one unit of each good

Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

Is the equilibrium unique?	
We have seen it is not	
(D) (Ø) (2) (Ž)	2 99.0
Lecture 4: Conoral Equilibrium	
	C
an al las	DD SON CONTINUAS
Is there always an equilibrium? S(
Is the equilibrium unique? $N\partial$	LAOZEN E
First welfare theorem	
Second welfare theorem	
(口) (西) (王) (王)	> 2 9.0°
Lecture 4: General Equilibrium	
First welfare theorem	
101-1021-122-12	> 2 900
First welfare theorem	
Theorem	
Consider any pure exchange economy Suppose that all consu- have weakly monotone utility functions. Then if (x^*, p) is a	mers Z
competitive equilibrium, then x [*] is a Pareto efficient allocation	•
	EQ
(D) (Ø) (Z) (Z	> 2 940-
Proof	
By contradiction:	
(D) (\$\$\$ (\$\$) (\$\$)<	> 2 040

- ▶ Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - ▶ Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)

0+ +0+ +2+ +2+ +0+0

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?

CURVA CATAMO

"przeferudo"

DO.P

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
 - Not in general...

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
 - Not in general... but what if we allow for a redistribution of resources?

Lecture 4: General Equilibrium				
Is there always an equilibrium?				
is the equilibrium unique?				
is the equilibrium unique:				
First welfare theorem				
Second welfare theorem				
	(日)(慶)(王)(王)(王)			
Lecture 4: General Equilibrium				
Second welfare theorem				
	(D) (Ø) (E) (E) E		<u>^</u> ~ ~ (LUTEVA DE (
Theorem 1				- DU
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^i, w^i)_{i \in \mathcal{I}} \rangle$	where all consumers have	70.P.	K	a v
Theorem Given an economy $\mathcal{E} = \langle I, (u^i, w^i)_{i \in I} \rangle$ weakly monotone, funsi-concave utility fit is a Pareto optimal allocation then there	where all consumers have unctions. If $[x^1, x^2,, x^l]$ exists a redistribution of) 0.iP.		
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^i, w^i)_{i\in I} \rangle$ weakly monotone, <u>traditionation</u> with the fraction is a Pareto optimal allocation then there resources $(\widehat{w^i}, \widehat{w^2},, \widehat{w^j})$ and some price the set of the set of t	where all consumers have unctions. If $[x^1, x^2,, x^l]$ exists a redistribution of es $p = (p_1, p_2,, p_L)$ such 65 where $Reptistions$	70.P.	De Las	DoTACIONA
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^i, w^i)_{i\in\mathcal{I}} \rangle$ weakly monotone, <u>trassi-concave</u> drillity fu is a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^l)$ and some price that $\mathcal{L} := \hat{w}^i = \sum_{i=1}^{i} w^i$ 2. $(p, (x^i, x^2,, x^l))$ is a competitive of	where all consumers have unctions. If $[x^1, x^2,, x^l]$ exists a redistribution of es $p = (p_1, p_2,, p_L)$ such es INA REDIS equilibrium of the	0.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^{i}, w^{i})_{i\in \mathcal{I}} \rangle$, weakly monotone, <i>twasi-concave</i> triffith for is a Pareto optimal allocation then there resources $(\widehat{w}^{1}, \widehat{w}^{2},, \widehat{w}^{l})$ and some price $\underbrace{\sum_{i=1}^{l} \widehat{w}^{i} = \sum_{i=1}^{l} w^{i}}_{conv}$ 2. $(p, (\underbrace{x^{1}, x^{2},, x^{l}}_{conv}))$ is a competitive to economy $\mathcal{E} = \langle \mathcal{I}, \widehat{w}^{i} \rangle_{i\in \mathcal{I}} \rangle$	where all consumers have unctions. If $(\underline{x^1, x^2, \dots, x^l})$ exists a redistribution of es $p = (p_1, p_2, \dots, p_l)$ such 65 UNA REDIS equilibrium of the	70.P.	De Las	DoTACIONA LAICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^i, w^i)_{i\in I} \rangle$ weakly monotone, busi-concave with the first a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2, \dots, \hat{w}^l)$ and some price $(\hat{w}^1, \hat{w}^2, \dots, \hat{w}^l)$ and some price $(\hat{w}^1, \hat{w}^2, \dots, \hat{w}^l)$ is a competitive economy $\mathcal{E} = \langle \mathcal{I}, (u^i, \hat{w}^i)_{i\in I} \rangle$	where all consumers have unctions. If $[x^1, x^2,, x^l]$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ suct 5 WAR REDIS equilibrium of the	70.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly montone, u_{usi} -concave utility for is a Pareto optimal allocation then there resources $(\widehat{w}^1, \widehat{w}^2,, \widehat{w}^l)$ and some price $\sum_{l=1}^{l} \widehat{w}^l = \sum_{i=1}^{l} w^i$ 2. $(p, (x_{l-x^2,, x^l}))$ is a competitive economy $\mathcal{E} = \langle \mathcal{I}, (\widehat{w}^l)_{i \in \mathcal{I}} \rangle$ ANTES	where all consumers have unctions. If $(x^1, x^2,, x^l)$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ such 65 WAR REDIS equilibrium of the	70.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle I, (u', w')_{i\in I} \rangle$, weakly monotone, <u>transi-concave</u> with f_i is a Pareto optimal allocation then there resources $(\widehat{w}^1, \widehat{w}^2,, \widehat{w}^l)$ and some price $\underbrace{f_{i=1}^{l}}_{i=1} \widehat{w}^l = \sum_{i=1}^{l} w^i$ 2. $(p, (\underline{x}^1, \underline{x}^2,, \underline{x}^l))$ is a competitive economy $\mathcal{E} = \langle I, w^l, \widehat{w}^l \rangle_{i\in I} \rangle$ ANTES	where all consumers have unctions. If $(\underline{x}^1, x^2, \dots, x^l)$ exists a redistribution of es $p = (p_1, p_2, \dots, p_l)$ such $\boldsymbol{\varepsilon}_{\boldsymbol{S}}$ where \boldsymbol{R} and \boldsymbol{R} and $\boldsymbol{\varepsilon}_{\boldsymbol{S}}$ equilibrium of the	0.P.	de Las	DoTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly monotone, <u>uuasi-concerve</u> (iilly fin is a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^1)$ and some price $\sum_{i=1}^{I} \hat{w}^i = \sum_{i=1}^{I} w^i$ 2. $(p_i (\underline{x}^1, \underline{x}^2,, \underline{x}^1))$ is a competitive economy $\mathcal{E} = \langle \mathbf{u}, (\hat{w}^1)_{i \in \mathcal{I}} \rangle$ ANTES	where all consumers have unctions. If $[(x^1, x^2,, x^l)]$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ such es we REPIS equilibrium of the	90.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle I, (u', w')_{i\in I} \rangle$, weakly monotone, $u_{uasi-concave v}$ (ifity for is a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^l)$ and some price $\sum_{i=1}^{I} \hat{w}^i = \sum_{i=1}^{I} w^i$ 2. $(p, (x^1, x^2,, x^l))$ is a competitive economy $\mathcal{E} = (I, \hat{w}^i)_{i\in I} \rangle$ ANTES ANTES	where all consumers have unctions. If $(\underline{x}^1, \underline{x}^2, \dots, \underline{x}^l)$ exists a redistribution of es $p = (p_1, p_2, \dots, p_l)$ such equilibrium of the 	00.P.	de Las	DoTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly monotone, <u>uuasi-concerve</u> diffity for is a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^1)$ and some price $\mathcal{L}_{\mathcal{I} = 1}^{I} \hat{w}^1 = \sum_{i=1}^{I} w^i$ 2. $(p_i, (\underline{v}, \underline{v}^2,, \underline{v}^1))$ is a competitive economy $\mathcal{E} = \langle \mathcal{I}, (u', \hat{w}^1)_{i \in \mathcal{I}} \rangle$ ANTES Control ANTES Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control C	where all consumers have unctions. If $[x_1^{-1}, x_2^{-1},, x_l^{-1}]$ exists a redistribution of es $p = (p_1, p_2,, p_L)$ such es was REPIS equilibrium of the	70.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle I, (u', w')_{i\in I} \rangle$, weakly monotone, $u_{uasi-concave v}$ (lifty for is a Pareto optimal allocation then there resources $(\widehat{w}^1, \widehat{w}^2,, \widehat{w}^l)$ and some price $\underbrace{\sum_{i=1}^{I} \widehat{w}^i = \sum_{i=1}^{I} w^i}_{e_i = \sum_{i=1}^{I} w^i}$. 2. $(p, (x^1, x^2,, x^l))$ is a competitive economy $\mathcal{E} = (x^1, \widehat{w}^1)_{i\in I}$. ANTES	where all consumers have unctions. If $(\underline{x}^1, x^2, \dots, x^l)$ exists a redistribution of es $p = (p_1, p_2, \dots, p_l)$ such equilibrium of the 	00.P.	de Las	DoTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly monotone, $u_{usi-concever will ity fits}$ is a Pareto optimal allocation then there resources $(\widehat{w}^1, \widehat{w}^2,, \widehat{w}^1)$ and some price $\mathcal{L}_{\mathcal{I} = 1}^{i} \widehat{w}^1 = \sum_{l=1}^{i-1} w^l$ 2. $(p, (x_{l-x}^2,, x_{l-1}^2))$ is a competitive economy $\mathcal{E} = \langle \mathcal{I}, (\widehat{w}^1, \widehat{w}^2)_{i \in \mathcal{I}} \rangle$ ANTES ANTES • Great, you don't need to close the m certain Pareto allocation	where all consumers have unctions. If $[x^{1}, x^{2},, x^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2},, p_{L})$ such es whe REDIS equilibrium of the harkets to achieve a	70.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle I, (u', w')_{i\in I} \rangle$, weakly monotone, $uasi-concave will by fit is a Pareto optimal allocation then there resources (\widehat{w}^1, \widehat{w}^2,, \widehat{w}^l) and some price\sum_{i=1}^{l} \widehat{w}^i = \sum_{i=1}^{l} w^i2. (p, (x^1, x^2,, x^l)) is a competitiveeconomy \mathcal{E} = (x^1, \widehat{w}^1)_{i\in I} \rangleAVES ANTES• Great, you don't need to close the mcertain Pareto allocation$	where all consumers have unctions. If $[(x^1, x^2,, x^l)]$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ such that $p = (p_1, p_2,, p_l)$ such equilibrium of the	Dero Bucio A	DE LAS	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly monotone, <i>uusi-conceve</i> , vility for is a Pareto optimal allocation then there resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^l)$ and some price $\mathcal{L}_{\mathcal{I}_{i=1}}^{I}, \hat{w}^i = \sum_{i=1}^{I} w^i$ $\mathcal{L}_{\mathcal{I}_{i=1}}^{I}, \hat{w}^i = \sum_{i=1}^{I} w^i$ $\mathcal{L}_{\mathcal{L}_{i=1}}^{I}, \hat{w}^i = \sum_{i=1}^{I} w^i$ $\mathcal{L}_{i=1}^{I}, \hat{w}^i =$	where all consumers have unctions. If $[x^{1}, x^{2},, x^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2},, p_{L})$ such es where $Reprints in equilibrium of the harkets to achieve a$	70.P.	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle I, (w', w')_{i \in I} \rangle$, weakly monotone, $wasi-conceve will be the is a Pareto optimal allocation then there u = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and some priceu = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and some priceu = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and some priceu = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and some priceu = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and some priceu = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} w^{i} and \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} and \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} and \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} and \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} and \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} = \sum_{i=1}^{l} \hat{w}^{i} and \hat{w}^{i} = \sum_{i=1}^{l} w$	where all consumers have unctions. If $[(\underline{x}^1, \underline{x}^2, \dots, \underline{x}^l)]$ exists a redistribution of es $p = (p_1, p_2, \dots, p_l)$ such equilibrium of the harkets to achieve a	020 700 700 700 700 700 700 700 700 700	de Las	DOTACIONA ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (w', w')_{i \in \mathcal{I}} \rangle$ weakly monotone, <u>uuasi-concerve</u> (iffly find is a Pareto optimal allocation then there resources $(w^1, \hat{w}^2,, \hat{w}^1)$ and some price $\mathcal{L}_{\mathcal{I}} = 1 \hat{w}^1 = \sum_{i=1}^{i} w^i$ 2. $(p_i) \langle \mathcal{L} \times \mathcal{L}_{uux} \times \mathcal{L} \rangle$) is a competitive - economy $\mathcal{E} = \langle \psi, \hat{w}^1 \rangle_{i \in \mathcal{I}}$ ANTES • Great, you don't need to close the m certain Pareto allocation	where all consumers have unctions. If $[(x^1, x^2,, x^l)]$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ such equilibrium of the harkets to achieve a	2007- 120 BUCION	de Las	DOTACIONO ENICIALE
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u', w')_{i \in \mathcal{I}} \rangle$, weakly monotone, $u_{uasi-concever will iffy fits is a Pareto optimal allocation then there resources (\hat{w}^1, \hat{w}^2,, \hat{w}^l) and some price\mathcal{L}_{i=1}^{l}, \hat{w}^l = \sum_{i=1}^{l} w^i\mathcal{L}_{i=1}^{l}, \hat{w}^{l} = \sum_{i=1}^{l} w^{i}Avise \mathcal{L}_{i=1}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}Avise \mathcal{L}_{i=1}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}Avise \mathcal{L}_{i=1}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}Avise \mathcal{L}_{i=1}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}, \hat{w}^{l}Avise \mathcal{L}_{i=1}^{l}, \hat{w}^{l}, \hat{w}^$	where all consumers have unctions. If $[x^{1}, x^{2},, x^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2},, p_{L})$ such equilibrium of the harkets to achieve a	- 200.P- - 120 BU CUO ÁU	d de Las	DOTACIONO ENICIALE
Theorem $\left(I, (u', w')_{i \in I} \right)$ Given an economy $\left(I, (u', w')_{i \in I} \right)$ weakly monotone, u_{abs} -conceve will by the resources $(\hat{w}^1, \hat{w}^2,, \hat{w}^l)$ and some price $\sum_{i=1}^{l} \hat{w}^i = \sum_{i=1}^{l-1} w^i$ $\widehat{w}^i = \sum_{i=1}^{l-1} w^i$ 2. $\left(p, (x^1, x^2,, x^l) \right)$ is a competitive. $economy \in I$ $\widehat{w}^i \in \sum_{i=1}^{l-1} \hat{w}^i$ Avies $Avies$	where all consumers have unctions. If $[\underline{x}^1, \underline{x}^2, \dots, \underline{x}^l]$ ests a redistribution of es $p = (p_1, p_2, \dots, p_L)$ such equilibrium of the harkets to achieve a harkets to achieve a	00.P-	d de Las	DOTACIONA
Theorem $\left(\begin{array}{c} J_{1} \left((u', w') \right)_{i \in \mathcal{I}} \right)^{i}$ Given an economy $\mathcal{E} = \left(\begin{array}{c} J_{1} \left((u', w') \right)_{i \in \mathcal{I}} \right)^{i}$ weakly monotone, $u_{add-controw thin there resources} (\hat{w}^{1}, \hat{w}^{2},, \hat{w}^{l})$ and some price $J_{1=1}^{i} \hat{w}^{i} = \sum_{l=1}^{l} w^{i}$ 2. $\left(p_{l} \left((\underline{x}, \underline{x}^{2},, \underline{x}^{l}) \right) \right)$ is a competitive economy $\mathcal{E} = \left(\begin{array}{c} J_{1} \left(\hat{w}^{i} \right) \right)_{i \in \mathcal{I}} \right)^{i}$ ANTES • Great, you don't need to close the m certain Pareto allocation • Great, you don't need to close the m certain Pareto allocation • Streat, you don't need to close the m • Great, you don't need to close the m • Oreat, you don't need to close the m • Oreat, you don't need to close the m	where all consumers have unctions. If $[\underline{x}^{1}, \underline{x}^{2}, \dots, \underline{x}^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2}, \dots, p_{L})$ such equilibrium of the harkets to achieve a harkets to achieve a dowments	00.P.	DE LAS	DOTACIONO ENICIALE
 Theorem Given an economy & = (I, (u', w'))_{i∈1}), weakly monotone, weakly monoto	where all consumers have unctions. If $[\underline{x}^1, \underline{x}^2,, \underline{x}^l]$ exists a redistribution of es $p = (p_1, p_2,, p_l)$ such equilibrium of the harkets to achieve a harkets to achieve a harkets to achieve a dowments	020 020	DE LAS	DOTACIONO ENICIALE
 Theorem Given an economy E = (I, (u', u'))_{i∈1}) is a varied optimal allocation then there resources (w¹, w²,, w¹) and some price L = (u', w²,, w¹) and some price economy E = (I, (u', u')) is a competitive is a com	where all consumers have unctions. If $[\underline{x}^{1}, \underline{x}^{2}, \dots, \underline{x}^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2}, \dots, p_{L})$ such equilibrium of the harkets to achieve a	90.P. 10.P. 10.P. 10.P.	DE LAS	Dotaciona Eniciale
 Theorem Given an economy E = (I, (u', w')_{i∈1}) + weakly monotone, usal-concurrent lifts is a Pareto optimal allocation then there resources (w¹, w²,, w¹) and some price is a Concern the second lift of the second lift of	where all consumers have unctions. If $[\underline{x}^{1}, \underline{x}^{2},, \underline{x}^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2},, p_{L})$ such equilibrium of the harkets to achieve a harkets to achieve a dowrments	-240	DE LAS	DoTACIONA ENICIALE
 Theorem Given an economy & = (I, (u', u'))_{i∈1}), ively and some price weakly monotone, wasi-conceve with the resources (w¹, w²,, w¹) and some price Local Sources (w¹, w²,, w¹) and some price (u, u) = (u, u) =	where all consumers have unctions. If $[\underline{x}^{1}, \underline{x}^{2},, \underline{x}^{l}]$ exists a redistribution of es $p = (p_{1}, p_{2},, p_{l})$ such equilibrium of the harkets to achieve a harkets to achieve a dowments	- 200. P- - 120 BU CUO ÁU	DE LAS	DoTACIONA

DE COTTRATO

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- > You just need to redistribute the endowments
 - Ok... but what re-distribution should I do to achieve a certain outcome? No idea
 - Ok... but how can we do this redistribution?

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- > You just need to redistribute the endowments
 - Ok... but what re-distribution should I do to achieve a certain outcome? No idea
 - Ok... but how can we do this redistribution? Not taxes, since they produce dead-weight loss