Lecture 4

Thursday, January 21, 2021 2:07 PM

Lecture 4: General Equilibrium

Mauricio Romero

(日)(四)(2)(2)(2)(2)	গৎ
	(D) (\$) (\$) (\$) \$

Lecture 4: General Equilibrium	
Is there always an equilibrium?	
First welfare theorem	
(日)(御)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)	2

First welfare theorem

Second welfare theorem

Excess demand	
► T is continuous	
Thus we can apply the fix point theorem	0
Therefore there exists a p^* such that $T(p^*) = p^*$ Then $Z(p^*) = 0$ Then $Z(p^*) = 0$ $T_1 = P_1 - T$ $T_2 = P_1 - T$	P1, THAX (0, 20(D) P2,
Excess demand	
 T is continuous Thus we can apply the fix point theorem 	
 Therefore there exists a p* such that T(p*) = p* 	
► Then $Z(p^*) = 0$ (why?)	
(ロ) (月) (注) (注) 注 の((
So when does it break down?	
We needed demand to be continuous!	
(日) (日) (日) (王) (王) (王) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	

• normalize $p_x = 1$

うせん 神 ふかく 山マ むく ふして

Is the equilibrium unique?

Is there always an equilibrium?

First welfare theorem

Second welfare theorem

Lecture 4: General Equilibrium	
Is there always an equilibrium?	
Is the equilibrium unique?	
First welfare theorem	
Second welfare theorem	
	<ロト < 個ト < 三ト < 三ト = ぎののの

.

Lecture 4: General Equilibrium
Is there always an equilibrium?
Is the equilibrium unique?
First welfare theorem
Second welfare theorem
(ロ) (四) (三) (三) (三) (日) (日) (日) (三) (三) (三) (日)
Is the equilibrium unique?
We have seen it is not

(B) (E) (E)

Is there always an equilibrium?	Signpre)
Is the equilibrium unique? $N_{\mathcal{O}}$	NGCESATUA ME
First welfare theorem	
Second welfare theorem	
	(ロ) (日) (王) (王) (王) (日)
ture 4: General Equilibrium	
First welfare theorem	
	(ロ) (日) (王) (王) (王) (王)
st welfare theorem	
Theorem Consider any pure exchange occurrent	(Suppose that all consumers
Consider any pure exchange economy have weakly monotone utility function	<i>x</i> . Suppose that all consumers ns. Then if (x^*, p) is a

(ロ)(母)(王)(王)(王)(日)(日)

Proof	
By contradiction:	
	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Proof	
By contradiction:	
Assume that $(p, (x^1, x^2,, x^l))$ is a comp that $(x^1, x^2,, x^l)$ is not Pareto efficient	petitive equilibrium but
	,
	<ロ> <日> <日> <日> <日> <日> <日> <日) <日> <日> <日) <日
Proof	
By contradiction:	
Assume that $(p, (x^1, x^2,, x^l))$ is a complete that $(y^1, y^2,, x^l)$ is a complete that $(y^1, y^2,, y^l)$ is not Parete efficient.	petitive equilibrium but
Then there is an allocation $(\hat{x}^1, \hat{x}^2,, \hat{x}^l)$	such that
► is feasible	
▶ pareto dominates $(x^1, x^2,, x^l)$	
	(ロ) (日) (日) (日) (日) (日)
5	

Proof

By definition of an equilibrium we have that

- ▶ Condition 3 in the previous slide implies p · x̂^{i*} > p · w^{i*}
 ▶ Otherwise, why didn't i* pick x̂^{i*} to begin with
- Condition 2 in the previous slide implies that for all *i*, $p \cdot \hat{x}^i \ge p \cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \cdot \widehat{x}^{i} > \sum_{i=1}^{l} p \cdot w^{i}$$

101-10-13-13-13-10-00

Proof

By definition of an equilibrium we have that

- ▶ Condition 3 in the previous slide implies p · x̂^{i*} > p · w^{i*}
 ▶ Otherwise, why didn't i* pick x̂^{i*} to begin with
- ▶ Condition 2 in the previous slide implies that for all *i*, $p \cdot \hat{x}^i \ge p \cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \ \hat{x}^i > \sum_{i=1}^{l} p \ w^i$$

Which in turn implie

implies

$$p\left(\sum_{i=1}^{r} \widehat{x}\right) > p\left(\sum_{i=1}^{l} w^{i}\right)$$

Proof

By definition of an equilibrium we have that

- ▶ Condition 3 in the previous slide implies p · x̂^{i*} > p · w^{i*}
 ▶ Otherwise, why didn't i* pick x̂^{i*} to begin with
- ▶ Condition 2 in the previous slide implies that for all *i*, $p \cdot \hat{x}^i \ge p \cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \cdot \widehat{x}^{i} > \sum_{i=1}^{l} p \cdot w^{i}$$

Which in turn implies

$$p \cdot \sum_{i=1}^{l} \widehat{x}^i > p \cdot \sum_{i=1}^{l} w^i$$

Which contradicts what Condition 1 in the previous slide implies.

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
 - · (B) (E) (E) E OQO
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
 - Not in general...

9.00 E (E) (E) (B) (0)

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?

Second welfare theorem

- Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
- Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
- Not in general... but what if we allow for a redistribution of resources?

10+40+45+45+ 8 990

O.P. "Preferoso"

Lecture 4: General Equilibrium	
Is there always an equilibrium?	
Is the equilibrium unique?	
First welfare theorem	
Second welfare theorem	
	$\langle \Box \rangle \langle \overline{\partial} \rangle$
Lecture 4: General Equilibrium	

Second welfare theorem	
Theorem Given an economy $\mathcal{E} = \langle \mathcal{I}, (u^i, w^i)_{i \in \mathcal{I}} \rangle$ where all consumers have weakly monotone, <u>muasi-conve</u> utility functions. If $[x^1, x^2,, x^l]$ is a Pareto optimal allocation then there exists a redistribution of resources $(\widehat{w}^1, \widehat{w}^2,, \widehat{w}^l)$ and some prices $p = (p_1, p_2,, p_L)$ such that: $1 \sum_{i=1}^{l} \widehat{w}^i = \sum_{i=1}^{l} w^i$ $2 \cdot p, (x^1, x^2,, x^l)$ is a competitive equilibrium of the economy $\mathcal{E} = \langle \mathcal{I}, (u^i, \widehat{w}^i)_{i \in \mathcal{I}} \rangle$	$\mathcal{P} O. \overline{P}$
・ロト(図)(ミト・芝) 差 ろんで	
Great, you don't need to close the markets to achieve a certain Pareto allocation	

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- > You **just** need to redistribute the endowments

