Lecture 1: General Equilibrium

Mauricio Romero

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Previous classes

- Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- When analyzed together, each market was viewed in isolation

Previous classes

－Consumers behavior（decision theory）was often analyzed separately from firm behavior（producer theory）
－When analyzed together，each market was viewed in isolation
－But markets are often intertwined

Previous classes

－Consumers behavior（decision theory）was often analyzed separately from firm behavior（producer theory）
－When analyzed together，each market was viewed in isolation
－But markets are often intertwined
－Transportation：Uber／metro／ecobici／car
－Wages across sectors
－Fruits
－Beer and tacos

Example - Fruits

- Suppose that apple and bananas are substitutes

Example - Fruits

- Suppose that apple and bananas are substitutes
- Supply curve for apples shifts out

Example－Fruits

－Suppose that apple and bananas are substitutes
－Supply curve for apples shifts out
－DD for bananas decreases（exogenous）

Apples

Bananas

Example - Fruits

- Suppose that apple and bananas are substitutes
- Supply curve for apples shifts out
- DD for bananas decreases (exogenous)
- DD for apples decreases (exogenous) - maybe a little

Apples

Bananas

Example - Fruits

- Suppose that apple and bananas are substitutes
- Supply curve for apples shifts out
- DD for bananas decreases (exogenous)
- DD for apples decreases (exogenous) - maybe a lot

Apples

Bananas

Example - Fruits

- What happens if apple and bananas are complements?

A tour down memory lane

- Léon Walras started it all (1834-1910)
- First to use mathematical tools in economics
- Supply and demand curves as solutions to a maximization problem
- Started the "marginal revolution"
- Walras was ultimately after normative questions (is the market economy good?)
- But first, he tackled positive questions (is there an equilibrium? is it unique?)
- Made a lot of progress. In particular came up with "Walras Law": Sum of the values of excess demands across all markets must equal zero always

A tour down memory lane

- Vilfredo Pareto was Walras student (1848-1923)
- Abandoned utilitarianism (i.e., utility functions)
- Embraced "preferences"
- Utility functions only have ordinal content
- Comparing "utils" across individuals is meaningless
- (Pareto) optimum/efficiency: Achieved if we can't make someone better-off without making someone worst-off

A tour down memory lane

- Francis Edgeworth (1845-1926)
- Introduced indifference curves
- Was the first to ask: Where will voluntary exchange lead to?
- He conjecture his result was aligned with Walras' result

A tour down memory lane

- No more advances for a while (until 1950's) then
- Kenneth Arrow
- Gerard Debreu
- Lionel McKenzie
- Existence
- Showed it was Pareto efficient
- Two Nobel prizes (Arrow - 1972 and Debreu - 1974)

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Pure Exchange Economies

－How are goods distributed among consumers？
－What incentives are there to exchange goods？What institutions mediate the exchange？
－Is there a distribution of goods that leaves everyone satisfied and there aren＇t any incentives to deviate？

Pure Exchange Economies

- What are the properties of such an equilibrium?
- Is it unique?
- Is it stable?
- Is it efficient?

Pure Exchange Economies

－Assume there are
－I consumers， $\mathcal{I}=\{1, \ldots, I\}$
－L goods， $\mathcal{L}=\{1, \ldots, L\}$
－Each consumer i is characterized by a utility function u^{i} ．
－Each consumer can consume goods in $x_{i} \in \mathbb{R}_{+}^{L}$
－Each consumer has an initial endowment of $w^{i} \in \mathbb{R}_{+}^{L}$ ．
－Each consumer is characterized by the pair：$\left(u^{i}, w^{i}\right)$ ．
－Assume the utility functions represent neoclassic preferences

Utility functions and neoclassic preferences

- A brief reminder

Utility functions and neoclassic preferences

- A brief reminder
- Utility functions are ordinal not cardinal

Utility functions and neoclassic preferences

- A brief reminder
- Utility functions are ordinal not cardinal
- They are used to represent preferences

Utility functions and neoclassic preferences

－A brief reminder
－Utility functions are ordinal not cardinal
－They are used to represent preferences
－If $x \succ_{i} y$ then $u^{i}(x)>u^{i}(y)$
－If f is any increasing function then $f\left(u^{i}(x)\right)>f\left(u^{i}(y)\right)$
－Hence $f\left(u^{i}(\cdot)\right)$ also represents \succ_{i}
－$u^{i}(x)>u^{i}(y)$ means something，but $u^{i}(x)-u^{i}(y)$ does not
－Neoclassic preferences are well behaved

Utility functions and neoclassic preferences

- A brief reminder
- Utility functions are ordinal not cardinal
- They are used to represent preferences
- If $x \succ_{i} y$ then $u^{i}(x)>u^{i}(y)$
- If f is any increasing function then $f\left(u^{i}(x)\right)>f\left(u^{i}(y)\right)$
- Hence $f\left(u^{i}(\cdot)\right)$ also represents \succ_{i}
- $u^{i}(x)>u^{i}(y)$ means something, but $u^{i}(x)-u^{i}(y)$ does not
- Neoclassic preferences are well behaved
- They can be represented by a utility function
- They are weakly monotonic
- They are quasi-concave

Pure Exchange Economies

Definition (Exchange economy)

A pure exchange economy is $\mathcal{E}=\left\langle\mathcal{I},\left(u^{i}, w^{i}\right)_{i \in \mathcal{I}}\right\rangle$ where \mathcal{I} is the set of agents, u^{i} is a representation of consumer i 's preferences and w^{i} is consumer i 's initial endowment.

- Let $w=\sum_{i=1}^{l} w^{i}$ be the total endowment of the economy.
- An allocation of resources is denoted by $x=\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ where $x^{i} \in \mathbb{R}_{+}^{L}$.

Pure Exchange Economies

Definition (Feasible allocation)
The set of feasible allocation F of an economy $\mathcal{E}=\left\langle\mathcal{I},\left(u^{i}, w^{i}\right)_{i \in \mathcal{I}}\right\rangle$ is defined by:

$$
F=\left\{x=\left(x^{1}, x^{2}, \ldots, x^{\prime}\right): x^{i} \in \mathbb{R}_{+}^{L}, \sum_{i=1}^{l} x^{i}=\sum_{i=1}^{\prime} w^{i}\right\}
$$

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Pareto efficiency

Definition（Pareto efficiency）

Let \mathcal{E} be an economy．A feasible allocation of resources $x=\left(x^{1}, x^{2}, \ldots, x^{\prime}\right)$ is Pareto efficient if there isn＇t another feasible allocation $\widehat{x}=\left(\widehat{x}^{1}, \widehat{x}^{2}, \ldots, \widehat{x}^{\prime}\right)$ such that for every agent i ， $u^{i}\left(\widehat{x}^{i}\right) \geq u^{i}\left(x^{i}\right)$ and for at least one agent $i^{*}, u^{i^{*}}\left(\widehat{x}^{i^{*}}\right)>u^{i^{*}}\left(x^{i^{*}}\right)$ ．

Pareto efficiency

Definition (Pareto domination)

Take two feasible allocations x and \hat{x}. We say that \hat{x} Pareto dominates x if for all $i=1, \ldots, l$,

$$
u_{i}\left(\hat{x}_{1}^{i}, \ldots, \hat{x}_{L}^{i}\right) \geq u_{i}\left(x_{1}^{i}, \ldots, x_{L}^{i}\right)
$$

and there is at least one consumer j for which

$$
u_{j}\left(\hat{x}_{1}^{j}, \ldots, \hat{x}_{L}^{j}\right)>u_{j}\left(x_{1}^{j}, \ldots, x_{L}^{j}\right) .
$$

Thinking about Pareto efficiency

－If x is a Pareto efficient feasible allocation，does it mean that x Pareto dominates all other feasible allocations？
－If there are two allocations（ x and y ）is it always the case that one Pareto dominates the other？
－For Pareto efficiency，the initial endowments only matter in the sense that they determined the total endowment of the economy
－Social planner should strive to achieve Pareto efficiency at the very least！

Thinking about Pareto efficiency

- If x is a Pareto efficient feasible allocation, does it mean that x Pareto dominates all other feasible allocations?
- If there are two allocations (x and y) is it always the case that one Pareto dominates the other?
- For Pareto efficiency, the initial endowments only matter in the sense that they determined the total endowment of the economy
- Social planner should strive to achieve Pareto efficiency at the very least! However, she may have other concerns such as fairness

Thinking about Pareto efficiency

- If utility is strictly increasing, then can a Pareto efficient allocation be such that $\sum_{i=1}^{l} x_{j}^{i}<\sum_{i=1}^{l} w_{j}^{i}$?
- The set of all Pareto allocations is known as the contract curve

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

Edgeworth Box

The Edgeworth box

Edgeworth Box

The Edgeworth box

Edgeworth Box

The Edgeworth box

Edgeworth Box

Edgeworth Box

Edgeworth Box

Edgeworth Box

