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• Agents decisions do not affect p. and thus there is no strategic in te raction 

• Although pis determ ined from the interact ion of all agents (aggregate supply = 
aggregate demand) 
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• However, it allows to study a wide range of situations that were did not fit in 
traditional microeconomics theory 
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• In the early 1950's, John Nash made his sem inal contributions to non-zero-sum 
gamesandstartedbargainingtheory 

• In 1967- 1968. John Harsanyi forma lized methods to study games of incomplete 
information 

• In the 1970s. game theory became part of main st ream econom ics (and other 
social sciences) 

Strategic sit uations and their representation 

A game is the descr iption of a strategic situat ion. To describe a game we need to 
descr ibe the fol lowing elements 

• Players or participants: The agents that take decisions in the game 

Strategic situations and their representation 

A game is the desc ription of a strategic situation . To describe a game we need to 
descr ibe the fol lowing elements 

• Players or participants: The agents that take decisions in the game 

• The rule of the game: a)Whatactionsareava ilabletoeach player(ateach 
decision point),and b) the order in which players take those actions 



Strategic situations and their representation 

A game is the descr iption of a strategic situat ion. To describe a game we need to 
descr ibe the fol lowing elements 

• Players or participants: The agents that take decisions in the game 

• The ru le of the game: a)Whatactionsareava ilabletoeach player(ateach 
decis ion point),and b) the order in which players take those actions 

• The information avai lable to each player 

Strategic situations and their representation 

A game is the descr iption of a strategic situation . To describe a game we need to 
descr ibe the fol lowing elements 

• Players or participants: The agents that take decisions in the game 

• The rule of the game: a)Whatact ionsareava ilabletoeach player(ateach 
decision point),and b) the order in which players take those actions 

• The information ava ilable to each player 

• How the results of the game depends on the act ions taken by each ind ividual 

Strategic situations and their representation 

A game is the descr iption of a strategic situat ion. To describe a game we need to 
descr ibe the fol lowing elements 

• Players or participants: The agents that take decisions in the game 

• The rule of the game: a)Whatactionsareava ilabletoeach player(ateach 
decision point),and b) the order in which players take those actions 

• The information avai lable to each player 

• How the results of the ga me depends on the act ions taken by each ind ividual 

• How ind ivid uals value the results of the game 

A few examples 

Example (Matching pennies (pares y nones) - Sequential) 

Two player5, Ana & Bart, choose whether to show one or two fingers. First , Ana shows 
fingers to Bart, then Bart, after observing Ana's play, chooses how many fingers to 
show. If the tota l number of finger5 is even, then Bart pays Ana 1,000 MXN . If the 
total number of fingers is odd. then Ana pays Bart 1,000 MXN . 

A few examples 

xample (Matching pennies (pares y nones) - Simu ltaneous) 

Two player5, n inger5simu ltaneously. If 
the total number of fingers is even. then Bart pays Ana 1.000 MXN. If the total 
number of fingers is odd, then Ana pays Bart 1,000 MXN 
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• Assume there are three agents with utility functions : 
u1(x) = ln(x + 51) , u2(x) = x + 51 , u3(x) = e-"+51 

• All 3 agents have the "'same preferences"' 

Utility 

' " Eo' 

••' 

• lf x" = argmaxx,:: r Eu(x) 

• lf x' = argmaxxerEu(x) 

• Then x' = argmaxxEr Eau(x) + b 



• lfx" = argmaxx,:: r Eu(x) 

• Then x* = argmaxx,::r ~ b 

• Proof that linear (or afine} transformations of the ut ility function represent the 
same preferences under uncertainty. 
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• What happens? 

• The first two pass, the third says "white" 

• Why? 

• They already knew there was at least a white hat (they knew there were at least 
<wo) 

• They already knew everyone knew there was at least a white hat 

• Now they al l now, that everyone knov,,s, that everyone knows (ad infinitum) that 
there isa white hat. 

• This highlights the difference between mutual knowledge e common knowledge 
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• This highl ights the difference between mutual knowledge e common knowledge 

• We say Y is common knowledge when all players knO'N Y . and they al l know that 
everyone knows Y , and they all know that everyone knows that everyone knows 
Y .... ad infinitum 

• WewillalwaysassumethingsarecommonknO'Nledge(therearesomeextensions 
to the cases when utility functions are not common knowledge) 
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Notation 

We will use the following notation: 

• Game participants (players) wil l be denoted by index i, where i = 1, ., N and 
there are Nplayers 

• A; is the space of possible act ions for individua l i. a, EA, is an action 

• If we have a vector a= (a1, .,a;_1, a;, a;+I , ... , ilN), then we wi ll denote by 
a_, := (a1 , .. , a,_1,a;+1- .. , aN) ya = (a, , a_;) 

• 5; is the strategy space for individual i. s; E 5; is a strategy. 

• Astrategyisacompleteaction plan. i.e., isan action for every possible 
contingencyofthegamea player may face 

• u,.istheutilityofplayerJ.u;~ ), i.e .. theutilityofplayerimaydependon 
her strategy, as well as the stra tegy of other players 
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• ::a ~~:~~t;a/i~;,ha(~)a~f ~tionhfor the two contingencies he may face (l) if 
• 1 nacooses21ingers 

• Sa.,.= {(l , l) ,(1,2),(2,1),(2, 2)} 

(-:!,oco, 1~) 
l_,10~ IOCX!>) ....-
c,oec,-~) 

AA,..~ t,z.~ 
~~ - ~ ,, 2.~ 

AP,:. ~ l I l ~ 
Se= ~c, 'l ~. 
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