Lecture11.pdf
Thursday, March 17, 2022 2:29 PM

망
Lecture $11 . .$.

Lecture 11: Game Theory // Preliminaries and dominanceMauricio Romero

Lecture 11: Game Theory // Preliminaries and dominance
Introduction - Continued
Static games with complete information

Lecture 11: Game Theory // Preliminaries and dominance

Introduction - Continued

Static games with complete information

Lecture 10: Game Theory // Preliminaries and dominance

Introduction - Continued
Normal or extensive form
Extensive form
Some examples
What's next

Static games with complete information
Dominance of Strategies

- We will represent games in two different ways
We will represent games in two different ways
This is just a way to schematizing the game and in general it makes the analysis
simpler

Normal form

The normal form consists of:

- The list of players
- The strategy space
- The pay-off functions

There is no mention of rules or available information. Where is this hidden?

Matching-Pennies (Pares y Nones) - Sequential

Prisoner's Dilemma

There are two players $I=\{1,2\}$ that are members of a drug cartel who are both
arrested an imprisoned. Each prisoner is in solitary confinement with no means of communicating with the other. The prosecutors lack enough evidence to convict the pair on the principal charge so they must settle for a lesser charge. Simultaneously, the prosecutor offers each prisoner a deal. Each prisoner is given the opportunity to either 1) betray the other by testifying the other committed the crime or to 2) cooperate
with the other prisoner and stay silent.

Prisoner's Dilemma

The strategies of player 1 :
$S_{1}=\left\{\right.$ betray $_{1}$, silent $\left._{1}\right\}$.

Prisoner's Dilemma
The strategies of player 1 :
$S_{1}=\left\{\right.$ betray $_{1}$, silent $\left._{1}\right\}$.
The strategies of player 2
$S_{2}=\left\{\right.$ betray $_{2}$, silent $\left._{2}\right\}$

- This is in many case the most natural way to represent a way, but always not the most useful
- This is in many case the most natural way to represent a way, but always not the most useful
- A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game
- This is in many case the most natural way to represent a way, but always not the most useful
- A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game
- I'm clearly far from being so brilliant... and thus use the extensive form all the time

This is in many case the most natural way to represent a way, but always not the most useful

A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game

- I'm clearly far from being so brilliant... and thus use the extensive form all the time
- To represent the game in extensive form you need:
- This is in many case the most natural way to represent a way, but always not the most useful

A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game
tim

- To represent the game in extensive form you need:
- A list of players
- This is in many case the most natural way to represent a way, but always not the most useful

A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game

- I'm clearly far from being so brilliant... and thus use the extensive form all the time
- To represent the game in extensive form you need
- Alist of players - Thnormation available to each player in each point in time
- This is in many case the most natural way to represent a way, but always not the most useful
- A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game
- I'm clearly far from being so brilliant... and thus use the extensive form all the time
- To represent the game in extensive form you need
- A list of players
vailable to each player in each point in tim
- The actions available to each player in each point in time
- This is in many case the most natural way to represent a way, but always not the most useful
- A famous game theorist once told me the extensive form was for "weak minds" the normal form should suffice to analyze any game

I'm clearly far from being so brilliant... and thus use the extensive form all the time

To represent the game in extensive form you need:

- A list of players The information available to each player in each point in time The actions available to each player in each point in time - The pay-off functions

The extensive form is usually accompanied by a visual representation call the "game tree"

- The extensive form is usually accompanied by a visual representation call the "game tree"
- Each node where a branch begins is a decision node, where a player needs to choose an action
- The extensive form is usually accompanied by a visual representation call the "game tree"

Each node where a branch begins is a decision node, where a player needs to choose an action

If two nodes are connected by a dotted line, it means they are in the same information set (i.e., the player is not sure in which node she is in)

Matchirg-Pernics (Pares y Nonce) - Simultaneels

Lecture 20 : Game theory i/ μ 'eliminaries and dominance

Introduct is n - Scotinuod
Some imporant remarks
Sone examples

Theorem

Les:ure 10: Game Theory if Preliminaries and dominance

Intraduct on - Satimurx

Some sea niles

Centipede Game

Suppose there are two reividuls Ana and Eemardo. Ana is given a chocolate. See can step the game and keep the chocolate or she can continue if she continues, Ana's and keep wo chocolates tare Aa will get zero) α can continue. Fie continues, chocolate is taken away from him and Allajis given four Ara ban stop le gene ane
 gat re ends willa three clozulales fox wash cree.
Cinlip:tde Game
I he raters vo form is

Centipedz Game

The norra tom is

	C	Γ
C.C	3.3	0,2
G.F	4.1	0,2
P.C	1.0	1,0
P.P	1.0	,- 0

	T	L	
$P C$	1,0	1,0	
$P P$	1,0	1,0	
$C P$	0,2	4,1	
$C C$	0,2	3,3	

Conside the follewing game in ex Ansive fomm.

$$
\begin{aligned}
& S_{1}=\{x, y, z\} . \\
& S_{2}=\left\{\begin{array}{l}
\left(\frac{P}{L, P)}, L Q, M P, M Q\right\} \\
(2,
\end{array}\right.
\end{aligned}
$$

The noma fom is.

Conneifle t te follewing, P, mithe in exventibe form

$$
\begin{aligned}
& S_{n}=\{(T, N):(, N, N) ;(P, N):(D N)\} \\
& S_{0}=\left\{A A^{\prime}, A N^{\prime}, N N^{\prime}, N N^{\prime}\right\} \text {. }
\end{aligned}
$$

I he norm: form is:

F				
	$A A^{\prime}$	$A N^{\prime}$	$N A^{\prime}$	N^{\prime}
	$A N^{\prime}$			
$E A$	3,3	3,3	61	6,1
$E N$	1,6	1,6	5,5	5.5
$D A$	0,4	0,35	6,4	$0,3.5$
$D N$	0,4	$0,3.5$	0,4	$0,3.5$

Lecture 10: Game Theory // Preliminaries and dominance

Introduction - Continued
Normal or extensive form
Extensive form Some important remarks
Some importan
What's next
Static games with complete information
Dominance of Strategies

- We would like to know how people are going to behave in strategic situations
- We would like to know how people are going to behave in strategic situations
- This is much more difficult than it seems
- We would like to know how people are going to behave in strategic situations

This is much more difficult than it seems

- The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop
- We would like to know how people are going to behave in strategic situations
- This is much more difficult than it seems
- The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop
- Solution concepts will look for "stable" situations
- We would like to know how people are going to behave in strategic situations
- This is much more difficult than it seems

The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop

- Solution concepts will look for "stable" situations
- That is, strategies where no individual has incentives to deviate or to do something different, given what others do.
- We would like to know how people are going to behave in strategic situations
- This is much more difficult than it seems
- The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop
- Solution concepts will look for "stable" situations

That is, strategies where no individual has incentives to deviate or to do something different, given what others do.

This is a concept equivalent to general equilibrium, where given market prices, veryone is optimizing, markets empty, and therefore no one has incentives to deviate, but nobody told us how we got there

- We would like to know how people are going to behave in strategic situations
- This is much more difficult than it seems

The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop

- Solution concepts will look for "stable" situations

That is, strategies where no individual has incentives to deviate or to do something different, given what others do.

This is a concept equivalent to general equilibrium, where given market prices, everyone is optimizing, markets empty, and therefore no one has incentives to deviate, but nobody told us how we got there
-We would like to know how people are going to behave in strategic situations

- This is much more difficult than it seems
- The concepts that have been developed do not pretend to predict how the individuals will play in a strategic situation or how the game will develop
- Solution concepts will look for "stable" situations
- That is, strategies where no individual has incentives to deviate or to do something different, given what others do.

This is a concept equivalent to general equilibrium, where given market prices, everyone is optimizing, markets empty, and therefore no one has incentives to
deviate, but nobody told us how we got there .. . (the Walrasian auctioneer?)

Lecture 11: Game Theory // Preliminaries and dominance

Introduction - Continued

Static games with complete information

Lecture 11: Game Theory // Preliminaries and dominance
ntroduction - Continued
tatic games with complete informatio

Static games with complete information

Games where all players move simultaneously and only once

Static games with complete information

- Games where all players move simultaneously and only once
- If players move sequentially, but can not observe what other people played, it's equivalent to a static game

Static games with complete information

- Games where all players move simultaneously and only once
- If players move sequentially, but can not observe what other people played, it's equivalent to a static game
- Only consider games of complete information (all players know the objective functions of their opponents)

Static games with complete information

- Games where all players move simultaneously and only once
- If players move sequentially, but can not observe what other people played, it's equivalent to a static game
- Only consider games of complete information (all players know the objective functions of their opponents)

These are very restrictive conditions but they will allow us to present very important concepts that will be easy to extend to more complex games

Static games with complete information

- Games where all players move simultaneously and only once
- If players move sequentially, but can not observe what other people played, it's equivalent to a static game
- Only consider games of complete information (all players know the objective functions of their opponents)
- These are very restrictive conditions but they will allow us to present very important concepts that will be easy to extend to more complex games
- As each player faces one contingency, the strategies are identical to the actions.

Lecture 10: Game Theory // Preliminaries and dominance

Introduction - Continued
Normal or extensive form
Extensive form
some important remarks
Some examples
What's next

Static games with complete information Dominance of Strategies
Dominance

| Dominance |
| :--- | :--- |
| s_{i} strictly dominates s_{i}^{\prime} if no matter what the opponent does, s_{i} gives a better payoff
 to i than s_{i}^{\prime}
 Definition
 Let s_{i}, s_{i}^{\prime} be two tin strategies. Then we say that s_{i} strictly dominates s_{i}^{\prime} if for all
 $s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right\rangle u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$. |

Dominance
A pure strategy s_{i} is strictly dominant if s_{i} strictly dominates every other strategy s_{i}^{\prime}
Definition
Let s_{i} be a pure strategy of player i. Then s_{i} is strictly dominant if for all $s_{i}^{\prime} \neq s_{i}, s_{i}$
strictly dominates s_{i}^{\prime}.

Dominance \quad Intuitively if a strategy s_{i} always results in a greater utility than s^{\prime}, regardless of | the strategy followed by the other players then the strategy s_{i}^{\prime} should never be |
| :--- |
| chosen by individual i |

Dominance
Intuitively if a strategy $s_{\text {; }}$ always results in a greater utility than s^{\prime}, regardless of
the strategy followed by the other players then the strategy s_{i}^{\prime} should never be
chosen by individual i We can eliminate any strategy that is strictly dominated
W.

Dominance in the prisoners dilemma

- NC dominates C for both individuals
- $(N C, N C)$ is not a Pareto Optimum.

Dominance in the prisoners dilemma

	C	NC
C	5,5	0,10
NC	10,0	2,2

- NC dominates C for both individuals
- $(N C, N C)$ is not a Pareto Optimum.
- What happened to the first welfare theorem? Is it incorrect?

- Player 1 has no strategy that is strictly dominated

- Player 1 has no strategy that is strictly dominated
- b dominates a for player 2, thus we can eliminate a

Dominance (iterated)
Consider this game

$$
\begin{array}{|l|c|c|c|}
\hline & \text { a } & \text { b } & \text { c } \\
\hline \text { A } & 5,5 & 0,10 & 3,4 \\
\hline B & 3,0 & 2,2 & 4,5 \\
\hline
\end{array}
$$

- Player 1 has no strategy that is strictly dominated
- b dominates a for player 2 , thus we can eliminate a
- Player 1 would foresee this.

- B now dominates A for player 1

Dominance (iterated)

- B now dominates A for player 1
- Player 2 would foresee this (that player 1 foresees that 2 will not play a, and thus he will not play B)

Dominance (iterated)

$$
\begin{array}{|c|c|c|}
\hline & \mathrm{b} & \mathrm{c} \\
\hline \mathrm{~B} & 2,2 & 4,5 \\
\hline
\end{array}
$$

- Player 2 would play c and player 1 would play B

Dominance (iterated)

$$
\begin{array}{|c|c|c|}
\hline & \text { b } & \text { c } \\
\hline \text { B } & 2,2 & 4,5 \\
\hline
\end{array}
$$

- Player 2 would play c and player 1 would play B
- We have reached a solution (B, C)

Dominance (iterated)

$$
\begin{array}{|c|c|c|}
\hline & \text { b } & \text { c } \\
\hline \text { B } & 2,2 & 4,5 \\
\hline
\end{array}
$$

- Player 2 would play c and player 1 would play B
-We have reached a solution (B, C)

This is known as Iterated Deletion of Strictly Dominated Strategies (IDSDS)

Dominance (iterated)

$$
\begin{array}{|c|c|c|}
\hline & \text { b } & \text { c } \\
\hline \text { B } & 2,2 & 4,5 \\
\hline
\end{array}
$$

- Player 2 would play C and player 1 would play B
- We have reached a solution (B, C)
- This is known as Iterated Deletion of Strictly Dominated Strategies (IDSDS)
- The equilibrium is the set of strategies, not the payof

IDSDS

Definition (Solvable by IDSDS)
A game is solvable by Iterated Deletion of Strictly Dominated Strategies if the result of the iteration is a single strategy profile (one strategy for each player)

IDSDS

- Two key assumptions
- Two key assumptions:
- 1) Nobody plays a strictly dominated strategy (that is, the agents are rational)

IDSDS

- Two key assumptions

1) Nobody plays a strictly dominated strategy (that is, the agents are rational)
2) Everyone trusts others are rational (i.e., they do not play strictly dominated (revies) That is, agents' rationality is common information

IDSDS

- Two key assumptions

1) Nobody plays a strictly dominated strategy (that is, the agents are rational)
2) Everyone trusts others are rational (i.e., they do not play strictly dominated trategies). That is, agents' rationality is common information

IDSDS

Two key assumptions

- 1) Nobody plays a strictly dominated strategy (that is, the agents are rational)

2) Everyone trusts others are rational (i.e., they do not play strictly dominated strategies). That is, agents' rationality is common information

Is the order of elimination of the strategies important? No

IDSDS

- Two key assumptions

1) Nobody plays a strictly dominated strategy (that is, the agents are rational)
2) Everyone trusts others are rational (i.e., they do not play strictly dominated strategies). That is, agents' rationality is common information

- Is the order of elimination of the strategies important? No
- Not all games are solvable by IDSDS
Battle of the sexes

	S2	?
G	2,1	0,0
P	0,0	1,2

- No strategy is dominated for either player

