| Lecture 14: Game Theory // Nash equilibrium | | | | |--|--|--|--| | Mauricio Romero | Lecture 14: Game Theory // Nash equilibrium | | | | | | | | | | Mixed strategies | | | | | Examples | | | | | | | | | | | | | | | Lecture 14: Game Theory // Nash equilibrium | | | | | | | | | | Mixed strategies | Mixed strategies Consider rock/paper/scissors | | | | | Rock Paper Scissors
 Rock 0,0 -1,1 1,-1
 Paper 1,-1 0,0 -1,1
 Scissors -1,1 1,-1 0,0 | | | | | Scissors -1,1 1,-1 0,0 -1,1 Scissors -1,1 1,-1 0,0 This game is entirely stochastic (ability has nothing to do with your chances of | | | | | winning) | | | | | | | | | | | | | | | Mixed strategies Consider rock/paper/scissors | | | | | Rock Paper Scissors Rock 0,0 -1,1 1,-1 Paper 1,-1 0,0 -1,1 Sissor -1,1 1,-1 0,0 | | | | | ► This game is entirely stochastic (ability has nothing to do with your chances of | | | | | winning) The probability of winning with every strategy is the same | | | | | | | | | | Mixed strategies | | | | | Considerated American Continues | | | | | Rock Paper Scissors Rock Rock Paper Scissors Rock 0.0 -1.1 1.1 1.1 Paper 1.1 0.0 -1.1 Scissors 1.1 1.1 0.0 0.1 1 | | | | | ► This game is entirely stochastic (ability has nothing to do with your chances of winning) | | | | | ► The probability of winning with every strategy is the same | | | | | ► Thus, people tend choose randomly which of the three options to play | | | | | Mixed strategies | | | | | Consider rock/paper/scissors | | | | | Rock Paper Scissors Rock 0.0 1.11 11 Paper 11 0.0 -1.1 Scissors -1.1 11 0.0 | | | | | This game is entirely stochastic (ability has nothing to do with your chances of
winning) | | | | | The probability of winning with every strategy is the same Thus, people tend choose randomly which of the three options to play | | | | | We would like the concept of Nash equilibrium to reflect this | | | | | Mixed strategies | | | | | Definition A mixed strategy σ_I is a function $\sigma_I:S_I\to [0,1]$ such that | | | | | $\sum_{s_i \in S_i} \sigma_i(s_i) = 1.$ | | | | | ▶ \(\sigma_i(s_i)\)\) represents the probability with which player / plays s; | | | | | | | | | | | | | | | Mixed strategies | | | | | Definition $ A \ mixed \ strategy \ \sigma_i \ is \ a \ function \ \sigma_i : S_i \rightarrow [0,1] \ such \ that $ | | | | | $\sum_{\mathbf{s} \in S_{\mathbf{s}}} \sigma_{\mathbf{s}}(\mathbf{s}) = 1.$ | | | | | σ_i(s_i) represents the probability with which player i plays s_i | | | | | A pure strategy is simply a mixed strategy σ; that plays some strategy s _i ∈ S _i with probability one | Mixed strategies | | |---|--| | Definition | | | A mixed strategy σ_i is a function $\sigma_i: S_i \to [0,1]$ such that $\sum_{s_i \in S_i} \sigma_i(s_i) = 1.$ | | | 468 | | | \blacktriangleright $\sigma_i(\mathbf{s}_i)$ represents the probability with which player i plays \mathbf{s}_i | | | A pure strategy is simply a mixed strategy σ; that plays some strategy s_i ∈ S; with probability one | | | \blacktriangleright We will denote the set of all mixed strategies of player i by Σ_i | | | 101-191-121-121-2-000 | | | Mixed strategies
\blacktriangleright Given a mixed strategy profile $(\sigma_1, \sigma_2, \dots, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles | | | | | | | | | | | | | | | | | | 1941 1 5 1 151 151 151 151 151 151 151 151 151 | | | Mixed strategies | | | Given a mixed strategy profile (σ₁, σ₂,,σ_n), we need a way to define how
players evaluate payoffs of mixed strategy profiles | | | $u_1(\sigma_1, \sigma_2,, \sigma_s) = \sum_{s \in S} u_1(s_1, s_2,, s_n) \sigma_1(s_1) \sigma_2(s_2) \cdots \sigma_s(s_n).$ | | | | | | | | | | | | | | | Mind analysis | | | Mixed strategies \blacktriangleright Given a mixed strategy profile $(\sigma_1, \sigma_2, \dots, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles | | | players evaluate payons of minor strategy profiles $u_1(\sigma_1, \sigma_2, \dots, \sigma_n) = \sum_{s \in S} u_1(s_1, s_2, \dots, s_n) \sigma_1(s_1) \sigma_2(s_2) \cdots \sigma_n(s_n).$ | | | For instance, assume my opponent is playing randomizing over paper and scissors with probability $\frac{1}{3}$ (i.e., $\sigma_{-r} = (0, \frac{1}{3}, \frac{3}{3}))$ | | | and problemity $\frac{1}{2}$ (i.e., $a_{-1} = \{0, \frac{1}{2}, \frac{1}{2}\}\}$ | | | | | | | | | (D) (B) (\$1 (B) 1 2 950 | | | Mixed strategies | | | Given a mixed strategy profile (σ₁, σ₂,, σ_n), we need a way to define how
players evaluate payoffs of mixed strategy profiles | | | $u_1(\sigma_1, \sigma_2,, \sigma_n) = \sum_{s \in S} u_1(s_1, s_2,, s_n)\sigma_1(s_1)\sigma_2(s_2) \cdot \cdot \cdot \sigma_n(s_n).$ | | | For instance, assume my opponent is playing randomizing over paper and scissors with probability ½ (i.e., σ., = (0,½,½)) The expected utility of playing "rock" is | | | The expectate triaty of playing rock is $E(U_i(\operatorname{rock},\sigma_{-i})) = -1\frac{1}{2} + 1\frac{1}{2} = 0$ | | | | | | | | | | | | Mixed strategies Fiven a mixed strategy profile $(\sigma_1, \sigma_2,, \sigma_n)$, we need a way to define how players evaluate payoffs of mixed strategy profiles | | | $u_1(\sigma_1, \sigma_2,, \sigma_n) = \sum_{s \in S} u_1(s_1, s_2,, s_n)\sigma_1(s_1)\sigma_2(s_2) \cdots \sigma_n(s_n).$ | | | For instance, assume my opponent is playing randomizing over paper and scissors | | | For instance, assume my opponent is playing randomizing over paper and scissors with probability ½ (i.e., σ.; = (0, ½, ½)) The expected utility of playing "rock" is | | | $E(U_i(rock, \sigma_{-i})) = -1\frac{1}{2} + 1\frac{1}{2} = 0$ | | | If I'm randomizing over rock and scissors $(i, a, \sigma_i = (\frac{1}{2}, 0, \frac{1}{2}))$ then $E(U_i(\sigma, \sigma_{-i})) = -1\frac{1}{2} + 1\frac{1}{4} + 1\frac{1}{4} + \frac{1}{4} + 0\frac{1}{4} = 0\frac{1}{4}$ where σ_i is a super-moderation. Since a page. | | | mack or pages — mack or schoolers — defensed or pages — schoolers — contract | | | Mixed strategies | | | | | | Definition | | | Definition $A \ (\text{possibly mixed}) \ \text{strategy profile} \ \left[\sigma_1^*, \sigma_2^*, \dots, \sigma_n^* \right]^k \text{is a Nash equilibrium if and only if} \\ \text{for every } i, \\ \omega(\sigma_1^*, \sigma_n^*) \geq \omega(\sigma_1, \sigma_n^*). \end{cases} \qquad \text{for all } \sigma_i \in \Sigma_i.$ | (OI) Ye | | for all $\sigma_i \in \Sigma_i$. | | | | 5 = 0. (5. i) V: (01,5.1) > 0. (5i) V: (01,5.1) | | | D O : (S.i) V: (Oi, S.i) > 2 0; (S.i) V. (OJ, S.t) | | Mixed strategies | Sies | | | JACKY_C | | Definition (Mixed Strategy Dominance Definition A) | | | Definition (Mixed Strategy Dominance Definition A)
Let σ_i, σ_i' be two mixed strategies of player i. Then σ_i strictly dominates σ_i' if for all
mixed strategies of the opponents, $\sigma_{-i,i}$ | <u>/</u> | | $\left(w_i(\sigma_i,\sigma_{-i}) \stackrel{>}{>} w_i(\sigma_i',\sigma_{-i}).\right)$ | / | | | | | | | | | | | Mixed strategies | | | | | | If σ_i is better than σ_i' no matter what pure strategy opponents play, then σ_i is also strictly better than σ_i' no matter what mixed strategies opponents play | | | Necessary by a five proved sprategies of player of They or, stripely definites of its single | | | anly stope $2N \le f \le \beta \le 1$, $\omega_i(\sigma_i, s_i) > \omega_i(\sigma_i', s_i)$ | | | | | | (2) (4) (3) (3) | | | Proof- Part 1 | | | | | | | | | $\blacktriangleright \ \ Since \ S_{-i} \subseteq \Sigma_{-i}, \ \ if \ \sigma_i \ \ strictly \ \ dominates \ \sigma_i'$ | | | | | | | | | | | ``` \blacktriangleright \ \, \mathsf{Since} \,\, S_{-i} \subseteq \Sigma_{-i}, \, \mathsf{if} \,\, \sigma_i \, \mathsf{strictly} \,\, \mathsf{dominates} \,\, \sigma_i^i \blacktriangleright \ \, \text{Then for all } s_{-r} \in S_{-1}, u_i(\sigma_i, \pi_{-i}) > u_i(\sigma_i', \pi_{-i}). \begin{split} \sum_{\mathbf{x} \in \mathcal{R}_{i-1} \in \mathcal{R}_{i-2}} & \sigma_{i}(\mathbf{x}) \sigma_{-i}(\mathbf{x}_{-i}) \omega(\mathbf{x}_{i},\mathbf{x}_{-i}) \\ & \sum_{\mathbf{x}_{-i} \in \mathcal{R}_{-i}} & \sigma_{-i}(\mathbf{x}_{-i}) \sum_{\mathbf{x}_{i} \in \mathcal{R}_{-i}} \sigma_{i}(\mathbf{x}_{i}) \omega(\mathbf{x}_{i},\mathbf{x}_{-i}) \\ & \sum_{\mathbf{x}_{-i} \in \mathcal{S}_{-i}} \sigma_{-i}(\mathbf{x}_{-i}) \omega(\sigma_{i},\mathbf{x}_{-i}) \end{split} \begin{split} \sum_{k \in S_i} \sum_{x_i \in S_{-i}} \sigma_i(\mathbf{x}_i) \sigma_{-i}(\mathbf{x}_{-i}) \omega(\mathbf{x}_i, \mathbf{x}_{-i}) \\ \sum_{k_i \in S_{-i}} \sigma_{-i}(\mathbf{x}_{-i}) \sum_{k_i \in S} \sigma_i(\mathbf{x}_i) \omega(\mathbf{x}_i, \mathbf{x}_{-i}) \\ \sum_{k_i \in S_{-i}} \sigma_{-i}(\mathbf{x}_{-i}) \delta \omega(\sigma_i, \mathbf{x}_{-i}) \end{split} u_i(\sigma_i, s_{-i}) > u_i(\sigma'_i, s_{-i}). Lecture 14: Game Theory // Nash equilibrium PASO I PROSE(P) PROSE(C) Battle of the sexes 52 5, G P (G,C); (P,P) E(U, (C, Oz))=2.40.(L)=2) E(U(P, 02)) = 0 x + 1 · (1-1) = 1-x P> 6 PM 6 1-2>2> 1-2=54 2=1/3 ストノノ 3/71 |\mathcal{L}_{i}|_{3} = |\mathcal{L G P G 2.1 0.0 P 0.0 1.2 Battle of the sexes G 2.1 0.0 P 0.0 1.2 ``` Battle of the sexes (c - 0+ 6) (2 - 6) 30=6) Follows having their synthetic resimplement anisotically regarders Establish the same in the Alice recommon transfer with every place I choose if and give the proceeding with which place is they if Book of the state: It fall is a respectfully with wear place Unicome Classify to the properties of a wild play. 7 Page 47 In $u(x,y)=2\lambda y+(1-\lambda)(1-y)$ Policy or reputable allower plays before a final plantage body are used plant districts. Fig. at $\lambda_1 \zeta_1 = \Delta \zeta_1 + (1 - \lambda)(1 - \zeta)$ Fig. 2. $\lambda_1 \zeta_2 = (1 - \lambda)(1 - \zeta)$ Fig. 3. $\lambda_1 \zeta_2 = (1 - \lambda)(1 - \zeta)$ Fig. 4. $\lambda_1 \zeta_2 = (1 - \lambda)(1 - \zeta)$ Let Survey under the wide player between Country to the probability and and player dishered. add q) = 25g f (1, −3) to q). For 1 f (1, 5, 12), and q > 2/2 s (1, q) and the fact to recognise it. 1-1 Filter 2 no. 101 then 2n . 01 1 - a pod transfer the her records a 10 0 0 In this course In this course probability with second (kgs. I chose of and give the policiety) and and place 2 chose 5 Be tild of the water * Let A tende occurring alternative place. I measure 4 and give the proton by with of kills years a place 5. **Body Community of the com > (4)2 (9 = 270 - (1 - 2)2 - 6). > Coun 1: If a ≥ 1,25, then 2a ≥ 2,5 ≥ 1 = a to the move, the country of ex- Case 2nd q = 1/2, more 2q = 1/2 = 1 and therefore no each exposure to [2]. Case 3 if q < 1/2, if 2 2q < N > 1 = q and therefore the law, in this is a finite or the law. $M_{\rm c}(a) = \begin{cases} 1 & 1 < -1/3 \\ 3 < 1 & 1 < -1/3 \\ 0 & 1 < < 1/3 \end{cases}$ Transe of the crues Similarly we can calculate trade to response function for proper Large weight. $\frac{f_1}{f(0)} = \frac{f(0) + 2/3}{f(0)} = \frac{f(0)}{f(0)} \frac{f(0)}$ There we there points where the treat response consecute. Fig. two as the part strategy hit is alread found as force. CORRECTIVE: BOCKET OI-(B,0, PA) G DOTUME A C. LOZ (ANDICIQUES: VI (O,E) > VI (C,E) VI (OI,G) > VI (C,E) - 3-PA > 2 -> PA > 2/3 The state of ▶ Note that $\sigma_1 = (\rho, 0, 1 - \rho)$ with $\rho > \frac{2}{4}$ dominates C