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Theorem (Nash's Theorem) 

Suppose tha.,.t!J~ pure strategy set Si is finite for all players i. A Nash equilibrium .,. \ 

always exist\.:,. .,,~l~t'lfAl't~ f;IV t"~'tATE{;,fAS. t7('1<1 AS) 
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Proof (just t he intuition) 

.., Proof is very similar to general equilibrium proof 

.., Two parts: 

1. A Nash equilibrium is a fixed point of the best response functions 

2 A finite game with mixed strategies has all the pre-requisites to guarantee a fixed 
point 

.., Remember X * is a fixed point of F(X) if and only if F(X* ) = X * 
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Proof - Part 1 

.., Let (s;, ... , s~) be a Nash equ il ibrium 

.., T hen sj = BR;(s~;) for a ll i 

~ Let r (s, , ... , Sa) = l§B~BR,(s_, ), ... , BRa('-a)) 

~ r (sj , ... , s;) = (sj , ... , s;) 

.., Therefore (s; , ... , s~) is a fixed poi nt of r 

1----1------5, 



Proof - Part 2 

Theorem (Kakutani fixed-point theorem) 

Let r : n --+ Q be a correspondence that is upper semi-continuous, Q be non empty, 
compact {dosed and bounded), and convex => r has at feast one fixed point 
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So we want to apply Kakutani's theorem. If the game is finite and we allow mixed 
strategies then 

.., L is compact: It includes the boundary (pure strategies) and is bounded (the 
game on ly has a finite set of strategies) 

.., L is convex: By allowi ng mixed stra tegies, we automatically make it convex 
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Proof - Part 2 

So we wa nt to apply Kakutani's theorem. If the game is finite and we allow mixed 

strategies then 

.., Lis compact: It includes the boundary (pure strategies) and is bounded (the 
ga me on ly has a fi nite set of strategies) 

.., L is convex: By a llowi ng mixed strategies, we automatically make it convex 

"" r(s1, ... , Sn) = (BR1(5-1) , BR2(s-2) . .. , BRn(5-n)) is upp er semi-continous. Why? 

.., If two pure strategies are in the best response of a player (s;,sf E BR;(s_ ;)), then any 
mixing of those strategies is also a best response (i.e., pa+ (1 - p)a E BR;(s_ ;)) 

"' Therefore if r(s1 , ... , sn) has two images, those two images are connected (via all the 
mixed strategies that connect those two images) 

.., That happens to be the definition of upper semi-continous 
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., D~'nJmic game ar~ those thJt c;1p tur~ J dyn;imic tltment in which some pla~'ers 
know what others d id before playing 

• O~rn.imic i,1mE: ;we those th.it c.ipture .i dyn.imic elemEnt in whi(h somP. pl.iy-E:rs 
knov,• wh;,,, t ottn:r~ did bd orta pl;,,,yin;,i, 

.., Rcmind{'r: A {pur~) strategy is ¢1 complete contingent plan o f ¢1Clion al C'lf<::ry 

inform.ition ser 

• l)y11c11111ic ga,-r,c a,~ Llu:>iC Lh~ l U p lur~ .~ dy11l 1fliC d~uu::n l in which sou·,.::: pl.iycrs 
know wh.it other; did before pl.i;•ing 

• RE:minder: A (pure) strateg;• is;• complete contingent plan of ;H:tion at every 
informaLion set 

• T he set of N.:ish equilibria of thE e..'<tEnsive form iamE is simply t he set of all Nash 
~quilibria o f the normal form repres<.:nhtion of th~ !;3m~ 

• r>yn;imic g.1mE: ;we those th.it c.ipture .i dyn.imic elemEnt in whi(h some pl.i~>'E:rs 
know wh;;iL Olhcr~ did b:::fon:: pl;;iyi11J.i. 

• Re-minder: /\ { pure j strateg~· is a complete contingent. plan of action at evtry 
inform:1tion sP.t 

• Th:.: ~ct vr N.r::,h equilibria of th~ cxlc11si•.•c form Aaruc is simply Lhc sd or a ll N;,,,sh 
equilibria of the norm.:il form repres~ntJtion of the g;,1me 

• Some nf t'hE E;(lllilihri,; do not m;:ikE; m1.1i-:h ;E;nse in:uir ivi!ly 

~ , , 

61£.~ ----
Wtit, .. ,. 



T wo Nash equilibria: (x,f) y (e,a) . 

e -3,-1 2,1 
0,2 0,2 

e -3,-1 2,1 
0,2 0,2 
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Ii>- But (x,f) is a Nash equili brium only because Firm 2 th reat ens to do a price war 

Ii>- But f is not a credible strategy 

Ii>- If Firm 1 enters th e market , Firm 2 will accommodate 

Ii>- We wil l study a refi nement that wi ll get rid of these type of eq uilibr ia 

Ii>- The overal l idea is that agents must play an optimal action in each node 

Ii>- In other words, play an optimal action in each node, condi t ional on reaching such 
node 

Ii>- In the previous exam pl e, f is not optimal if we reach t he second period 

Ii>- A nat ura l way to make su re players are optimizing in each node is to solve the 
ga me via backwards induction 



• A n.:iw ,.:il w.:iy to m,:ik~ suri, pl.i;'~fS ;irP, opr ·mi,-ing in e.ich nccli, i5 ro ~Ive t hP, 
P;.Cuuc via b.;,ckwcu:.h indudiu11 

• This amounts to :,.t;,rting from the end of the g;,me. and work the way b.iekw.:irds 

by ('liminJting r,on optimal strategies 

• A ua lural wov lo m<ikc sun: pl.i\<crs .i•e opli111i.£in~ in :.:.id1 node i~ Lo solve tne 
g.ime vi.:i bJ( k¼'.irds inclucticn 

.._ I his amounts to s~arting from the e-nd of the game, ~nd wo1K. the way b..,dwards 
by P.liminating non-optlm.,1 str,1:-t=:git=:s 

• 1\ natucal way to make sure playtfS are op:·miz·ng in ~adl ncde i·; to solve the 
g~;,me vi~ b:tc:kw:irds ir.duc:t.ion 

• This amount.~ tn !'.tarting from thP. end of thP. gamP.. :inrl \'A"lrk thP. way h.,,;::kw~rrl~ 
by <:li111i11dling r OrH>plimal Slralcgit::!. 

Tht-orein (Zermelo) 
In t\'e'fY finlte g;:me where every iJ1form,1iioJ1 ser h;,s ., sing,'e node (i.e., complete 
infurrn,1tio,1), h:i~' :m N:;sh eqw'fibrjum th.'tt c ,'tfl be df!.t:'ved vh~ b:tckv,atd!>' ind:,ction. If 
a~e p.1youcs to p!clJ-e>t-s ~re d/fferenr .in ,11,' te,m.:n:ll nodes, Chea :he JV~si1 e,qc;ii'ibrium is 
1miq11P.. 

Theorem (7ermelo 11) 
In anv fjn.ik: li1tv-p,·rso11 ;.:~1m:.• or µ,:rfocl i!lfc:mu1tio,, i:, •Nllich !iJ,, pfavcrs mol,t 
.,1'rem,,r,'11g.~, .,nd in v:hich c:h,111c:e doe.; not ,,ffe-ct the de-ci.sio11 m,,king proc:e55, lf the 
j!. :,mw c:;,nnot emf in:.:, dt~w, tire:,, unc uf tli~ tv1v pfafl'f!> must h;,v~ a v1i1111i,,1g str"'tCJ!,f 

(i., . fore, o win). 

Centipede Go.tmt' 
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'~f' r) 1. 
C p 

c.c 3.3 0,2 
C,i> 4.1 0,2 
P,C 1,0 1,0 

An f-NA-'64-
10" CJz €t e( -c . 

P.P l.0 1.0 

., Nash equ'libria ore \(I'. I'), I') and \(I', C), P/ 

C I' 
c.c 3,3 0,2 
C.P 4,1 fl,2 
11,C 1.0 1.0 
P,P 1.0 1,0 

,-. Nash cqu·libria ~re {(I-,. P), P) ~nd {(J.' . C). I-'} 

• ~ul ir the game rep{'at-j 1.000 times iL wuuld be impossible to analyze 

C p 

c.c H 0.2 
C,P 4.1 0,2 
r.c 1,0 1.0 
P.P 1,0 l.O 

..,. Nash equi!ibri~ a:e {{I'. I'), I'} and ({/' , (). F} 

_,. But if the game repeats L000 times it would b~ impos..sible to analyze 

• But l,y lx1ckw.:ird induction, the solution i5 to pkiy P in e.ich period 

Con::.·dcr lh<: fullcwing ~ -------------

;~::/ 
. t\···· 

·< -----... ,, 
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..,. Can't be solved by backwards induction 

• Can't be solved by backwards induction 

..,. Thus, we need something else 

..,. Can't be solved by backwards induction 

..,. Thus, we need something else 

..,. First, we need to defined a subgame 

A sub-game, of a game in extensive form, is a sub-tree such that 

..,. It starts in a single node 

..,. If contains a node, it contains a ll subsequent nodes 

..,. If it contains a node in an information set, it contains all nodes in the information 
set 

Definition 
A subgame of an extensive form game is the set of all actions and nodes that follow a 
particular node t hat is not included in an information set with another distinct node 



By definition , the original game is a subgame 

Centipede Game 

(3,3) 

(1 ,0) (0,2) (<1 ,1) 

2~3,3 

( '<0---:: 
I ~ <I, l 

1 

Since in some games (where multiple nodes are in the same information set) we can't 
formally choose how people are optimizing, we extend the notion of backwards 
induction to subgames 

Definition (Subgame perfect Nash equilibria) 

A pure strategy profile is a Subgame perfect Nash equilibria (SPNE) if and on ly if it 
involves the play of a NE in every subgame of the game. 



Remark 
Every SPNE is a NE 

Re~ark mixed strategy SPNE can be defined but this is a bit 
As ,n normal form games, b t .t for the purposes of the course. technical. Thus, we will not worry a ou , 

2 ~ 3, ) 

~~ .• s 
I~: 6.7 

, ~
8 

~41 

5.5 

LA 3.3 4.2 

~ The game has 3 NE: (LB,X), (MA,Y),(MB,Y) 

..,_ The subgame has a single NE: (B,X) 

~ The SPNE ;, (LB,X) 


