Lecture15.pdf

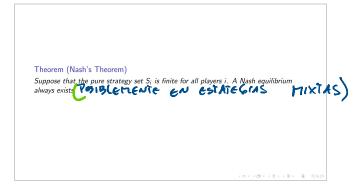
Thursday, March 31, 2022 2:38 PM

Lecture15....

Lecture 15: Game Theory $//$ Nash equilibrium	
Mauricio Romero	
(0) (0) (0) (0) (0)	

Lecture 15: Game Theory // Nash equilibrium	
Nash's Theorem	
Dynamic Games	
	(ロ)(()()()()()()()()()()()()()()()()()(

Lecture 15: Game Theory // Nash equilibrium	
Nash's Theorem	
Dynamic Games	
	(D)(@)(2)(2) 2) 90



Proof (just the intuition) Proof is very similar to general equilibrium proof 	
Proof is very similar to general equilibrium proof	
	· □ > · Ø > · (≷ > · (≷ > · ≷
Proof (just the intuition)	
Proof is very similar to general equilibrium proof	
 From is very similar to general equilibrium proof Two parts: 	

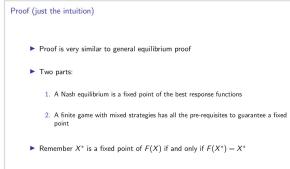
- 10 - 15 - 15 - 15 - 10 - 1

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:
 - 1. A Nash equilibrium is a fixed point of the best response functions

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:
 - 1. A Nash equilibrium is a fixed point of the best response functions
 - 2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed point $% \left({{{\rm{D}}_{\rm{B}}}} \right)$



000 5 (5) (5) (5) (0)

ĐS,

Theorem (Kakutani fixed-point theorem)

Let $\Gamma:\Omega\to\Omega$ be a correspondence that is upper semi-continuous, Ω be non empty, compact (closed and bounded), and convex $\Rightarrow \Gamma$ has at least one fixed point

100 5 (5) (5) (5)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

 $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$

0 + (0 + 12 + 12 + 12 + 10 + 10

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- \blacktriangleright Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- $\blacktriangleright~\Sigma$ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \blacktriangleright Σ is convex: By allowing mixed strategies, we automatically make it convex

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- \blacktriangleright Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- $\blacktriangleright\ \Sigma$ is convex: By allowing mixed strategies, we automatically make it convex
- ► $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- \blacktriangleright Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \blacktriangleright Σ is convex: By allowing mixed strategies, we automatically make it convex
- ▶ $\Gamma(s_1,...,s_n) = (BR_1(s_{-1}), BR_2(s_{-2}),...,BR_n(s_{-n}))$ is upper semi-continous. Why?
 - ▶ If two pure strategies are in the best response of a player $(s_i, s'_i \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i}))$)

10+12+12+ 2 040

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$
- \blacktriangleright Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- $\blacktriangleright\ \Sigma$ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?
 - ▶ If two pure strategies are in the best response of a player $(s_i, s'_i \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i}))$)
 - ▶ Therefore if $\Gamma(s_1,...,s_n)$ has two images, those two images are connected (via all the mixed strategies that connect those two images)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

 $\blacktriangleright \ \Gamma: \Sigma \to \Sigma$

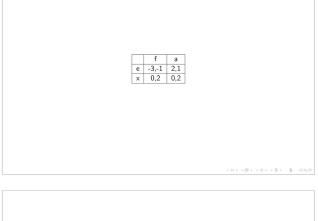
- \blacktriangleright Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- \blacktriangleright Σ is convex: By allowing mixed strategies, we automatically make it convex
- ► $\Gamma(s_1, ..., s_n) = (BR_1(s_{-1}), BR_2(s_{-2}), ..., BR_n(s_{-n}))$ is upper semi-continous. Why?
 - ▶ If two pure strategies are in the best response of a player $(s_i, s_i' \in BR_i(s_{-i}))$, then any mixing of those strategies is also a best response (i.e., $p\sigma + (1-p)\sigma \in BR_i(s_{-i}))$)
 - Therefore if \(\Gamma(s_1, ..., s_n)\) has two images, those two images are connected (via all the mixed strategies that connect those two images)
- That happens to be the definition of upper semi-continous

<ロ><週><2><き、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)

Dynamic Games

101100100100100100 B 9940

know what others	e those that capture a dyn did before playing e) strategy is a complete			
		11 -3		8 (GO)
 know what others Reminder: A (pur information set The set of Nash e 	e those that capture a dyn did before playing e) strategy is a complete quilibria of the extensive f ormal form representation	contingent plan o orm game is simply	faction at every	sh
 Dynamic game an know what others 	e those that capture a dyn did before playing		ich some players	e - 1260
 information set The set of Nash e equilibria of the n 	e) strategy is a complete quilibria of the extensive f ormal form representation ibria do not make much se	orm game is simply of the game ense intuitively	the set of all Na:	
		-	181131131	8 AUST



	f a 31 2.1 0.2 0.2
Det (1) is a Ned and "lifetime set	(D)(B)(E)(E) E 090
But (x,t) is a wash equilibrium only	because Firm 2 threatens to do a price war

But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
But f is not a credible strategy
But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
But f is not a credible strategy
If Firm 1 enters the market, Firm 2 will accommodate

(D) (B) (2) (2) 2 9000

- ▶ But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- ▶ If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria

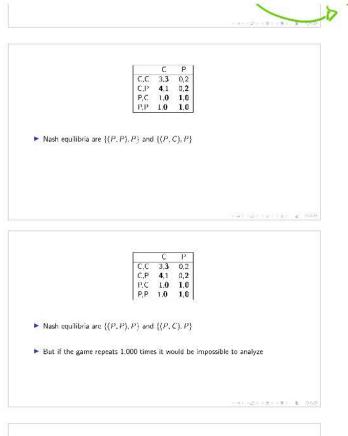
0 + (0 + 12 + 12 + 2) Q(

- ▶ But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- ▶ If Firm 1 enters the market, Firm 2 will accommodate
- > We will study a refinement that will get rid of these type of equilibria
- ▶ The overall idea is that agents must play an optimal action in each node

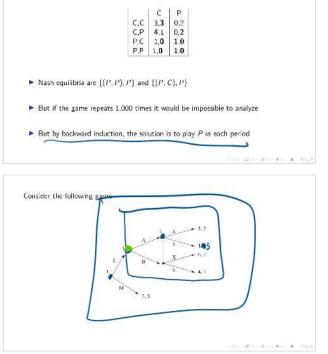
0++@++2++2+ 2 940

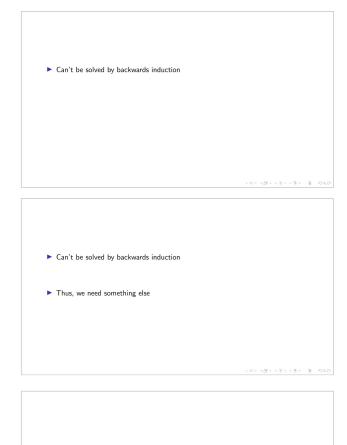
- ▶ But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- ▶ If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- ▶ The overall idea is that agents must play an optimal action in each node
- In other words, play an optimal action in each node, conditional on reaching such node

- ▶ But (x,f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- ▶ If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- ▶ The overall idea is that agents must play an optimal action in each node
- In other words, play an optimal action in each node, conditional on reaching such node
- \blacktriangleright In the previous example, f is not optimal if we reach the second period



(PG, P) { AneNAZA No CZEIB(2.





- Can't be solved by backwards induction
- ► Thus, we need something else
- ► First, we need to defined a subgame

A sub-game, of a game in extensive form, is a sub-tree such that

- It starts in a single node
- ► If contains a node, it contains all subsequent nodes
- If it contains a node in an information set, it contains all nodes in the information set

Definition

A subgame of an extensive form game is the set of all actions and nodes that follow a particular node that is not included in an information set with another distinct node

