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Theorem (Nash’s Theorem)

Suppose that the pure strategy set S; is finite for all players i. A Nash equilibriu

always existsCV s mle mesie &V es
MeT 45

Proof (just the intuition)

> Proof is very similar to general equilibrium proof

Proof (just the intuition)

> Proof is very similar to general equilibrium proof

» Two parts:



Proof (just the intuition)

> Proof is very similar to general equilibrium proof

» Two parts:

1. A Nash equilibrium is a fixed point of the best response functions

Proof (just the intuition)

> Proof is very similar to general equilibrium proof

» Two parts:
1. A Nash equilibrium is a fixed point of the best response functions

2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed
point

Proof (just the intuition)

» Proof is very similar to general equilibrium proof

» Two parts:

1. A Nash equilibrium is a fixed point of the best response functions

2. A finite game with mixed strategies has all the pre-requisites to guarantee a fixed
point

» Remember X* is a fixed point of F(X) if and only if F(X*) = X*

Proof - Part 1

> Let (sf,...,5;) be a Nash equilibrium

Proof - Part 1

> Let (sf,...,5) be a Nash equilibrium

> Then s7 = BRi(s") for all i

Proof - Part 1

> Let (sf,....5;) be a Nash equilibrium
> Then s7 = BRi(s";) for all i

> Let [(s1, ..., 5n) = (BRi(s-1), BRo(5-2), . BRa(5-n))



Proof - Part 1

> Let (sf,...,5) be a Nash equilibrium
> Then st = BRi(s",) for all i

> Let [(s1, s 50) = (BRi(5-1), BRa(5-2), s BRo(5-1))

Proof - Part 1

> Let (sf,....5;) be a Nash equilibrium
> Then st = BRi(s";) for all i

> Let [(s1, .., 5n) = (BRi(s1), BRy(5_2), - BRa(s_n))

> Therefore (s, ... ;) is a fixed point of I

Proof - Part 2

nuls. i)

Theorem (Kakutani fixed-point theorem)
Let T+ Q — Q be a correspondence that is

er semi-continuous, e non empty,

compact (closed and bounded), and convex = TFa% 3t Teast one fixed point
compact (clesed and bounded) and convex
S-¢
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So we want to apply Kakutani's theorem. If the game is finite and we allow mixed
strategies then
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> ¥ is compact: It includes the boundary (pure strategies) and is bounded (the
game only has a finite set of strategies)

> ¥ is convex: By allowing mixed strategies, we automatically make it convex
» [(s1,...,50) = (BRi(5-1), BRa(5-2), ..., BRa(5n)) is upper semi-continous. Why?

> If two pure strategies are in the best response of a player (s;, s/ € BRi(s_7)), then any
mixing of those strategies is also a best response (i.e., po + (1 — p)o € BRi(s_;))

> Therefore if T(s1. ....,) has two images, those two images are connected (via all the
mixed strategies that connect those two images)

> That happens to be the definition of upper semi-continous
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Two Nash equilibria: (x.f) y (e,a).
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In other words, play an optimal action in each node, conditional on reaching such
node

» In the previous example, f is not optimal if we reach the second period
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> A natural way to make sure players are optimizing in each node is to solve the
game via backwards induction

> This amounts to starting from the end of the game, and work the way backwards
by eliminating non-optimal strategies

Theorem (Zermelo)

In every finite game where every information set has a single node (i.e., complete
information), has an Nash equilibrium that can be derived via backwards induction. If
the payouts to players are different in all terminal nodes, then the Nash equilibrium is
unique.
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» Can't be solved by backwards induction

» Can't be solved by backwards induction
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» Can't be solved by backwards induction

> Thus, we need something else

> First, we need to defined a subgame

A sub-game, of a game in extensive form, is a sub-tree such that

> It starts in a single node

> If contains a node, it contains all subsequent nodes

» If it contains a node in an information set, it contains all nodes in the information
set

Definition
A subgame of an extensive form game is the set of all actions and nodes that follow a
particular node that is not included in an information set with another distinct node

By definition, the original game is a subgame



Centipede Game

Since in some games (where multiple nodes are in the same information set) we can't
formally choose how people are optimizing, we extend the notion of backwards
induction to subgames

Definition (Subgame perfect Nash equilibria)

A pure strategy profile is a Subgame perfect Nash equilibria (SPNE) if and only if it
involves the play of a NE in every subgame of the game.

NE

Remark
Every SPNE is a NE

Remark
As in normal form games, mixed strategy SPNETTH be defined but this is a bit
technical. Thus, we will not worry about it for the purposes of the course.
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> The game has 3 NE: (LB,X), (MA,Y),(MB.Y)

> The subgame has a single NE: (B,X)

> The SPNE is (LB,X)



