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Two Nash equil ibria: (x.f) y (e,a) . 

e -3,-1 2,1 
0,2 0,2 
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'" We wil l study a refinement that will get rid of these type of equi libr ia 
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'" In the previous example, f is not optimal if we reach the second period 

'" A natura l way to make sure players are optimizing in each node is to solve the 
ga me via backwards induction 

'" A natura l way t o make sure players are optimizing in each node is to solve the 
ga me via backwards induction 

'" This amounts to starting from the end of the game, and work the way backwards 
by eliminating non-opt imal strategies 

'" A natura l way t o make sure players are optimizing in each node is to solve the 
ga me via backwards induction 

'" This amounts to starting from the end of the game, and work t he way backwards 
by eliminating non-opt imal strategies 

'" A natura l way to make sure players are optimizing in each node is to solve the 
game via backwards induction 

• This amounts to starting from the end of the game, and work the way backwards 
by eliminating non-optimal strategies 

Theorem (Zermelo) 

In every finite game where every information set has a single node (i.e., complete 
information). has an Nash equilibrium that can be derived via backwards induction. If 
the payouts to players are different in a// terminal nodes. then the Nash equilibrium is 
unique. 
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• Thus, we ne€d something else 

• First , we need to defined a subgame 

A sub-game, of a game in extensive form, is a sub-tree such that 

• It starts in a single node 

• If contains a node, it conta ins all subsequent nodes 

'" lfitconta insanode inan informationset, itconta insallnodesintheinformation 

Definition 
A subgame of an extensive form game is the set of all actions and nodes that fol low a 
particular node that is not included inan infDfmation setwithanotherd ist inct node 

By definition, the original game is a subgame 



Centipede Game 

2<3.3 
,z'<<:; 

'·' 
M 

'·' 
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Defioitioo (Sobgame pe,fect Na . . backwa,ds 

~ purestrategyprofileisa sh equilibria) 
involves the play of a NE inS:!g~me,perfect Nash equilibria (SPNE) f ·, su game of the game. 1 and only ifit 

Remark 
Every SPNE is a NE 
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"' The game has 3 NE: (LB ,X) , (MA,Y).(MB.Y) 

.,. The subgame has a si ngle NE: (B,X) 

"' The SPNE is (LB ,X) 


