Lecture15.pdf
Thursday, March 31, 2022 3:47 PM

圈
Lecture15....

Proof (just the intuition)

- Proof is very similar to general equilibrium proof

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

1. A Nash equilibrium is a fixed point of the best response functions

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts

1. A Nash equilibrium is a fixed point of the best response functions
2. A finite game with mixed strategies has all the pre-equisites to guarantee a fixed point

Proof (just the intuition)

- Proof is very similar to general equilibrium proof
- Two parts:

1. A Nash equilibrium is a fixed point of the best response functions
2. A finite game with mixed strategies has all the pre-equisites to guarantee a fixed
point

- Remember X^{*} is a fixed point of $F(X)$ if and only if $F\left(X^{*}\right)=X^{*}$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{-i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$
$-\Gamma\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$

Proof - Part 1

- Let $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be a Nash equilibrium
- Then $s_{i}^{*}=B R_{i}\left(s_{i}^{*}\right)$ for all i
- Let $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$
- $\Gamma\left(s_{1}^{*} \ldots, \ldots, s_{n}^{*}\right)=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$
- Therefore $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a fixed point of T

Proof - Part 2

Theorem (Kakutani fixed-point theorem)
Let $\Gamma: \Omega \rightarrow \Omega$ be a correspondence that is beer semi-continuous, Ω oe non empty,
Let $\Gamma: \Omega \rightarrow \Omega$ be a correspondence that is breer semi-continuous, D De non em
compact (closed and bounded), and convex \Rightarrow has at least one fixed point

Proof - Part 2
So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- 「: $\Sigma \rightarrow \Sigma$

Proof - Part 2
So we want to apply Kakutani's theorem. If the game is finite and we allow mixed strategies then

- $\Gamma: \Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)

Proof - Part 2
So we want to apply Kakutani's theorem. If the game is finite and we allow mixed
strategies then
strategies then

- $\Gamma: \Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?

Proof - Part 2
So we want to apply Kakutani's theorem. If the game is finite and we allow mixed
trategies then

- $\Gamma: \Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?

If two pure strategies are in the best response of a player $\left(s_{i}, s^{\prime} \in B R_{i}\left(s_{i}\right)\right)$, then any
mixing of those strategies is also a best response $\left(i . e ., p \sigma+(1-p) \sigma \in B R_{i}\left(s_{-i}\right)\right)$

Proof - Part 2
So we want to apply Kakutani's theorem. If the game is finite and we allow mixed
strategies then

- $\Gamma: \Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
- Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?

If two pure strategies are in the best response of a player $\left(s_{i}, s^{\prime} \in B R_{i}\left(s_{-i}\right)\right)$, then any
mixing of those strategies is also a best response $\left(i . e ., p \sigma+(1-p) \sigma \in B R\left(s_{i}\right)\right)$
$m i x i n g$ or hose strategies is also a best response (i.e., $\left.p \sigma+(1-p) \sigma \in B R_{i}(s-i)\right)$
Therefore if $\mathrm{f}\left(s_{1}, \ldots, s_{n}\right)$ has two images, those two images are connected (via all the
mixed strategies that connect those two images)

Proof - Part 2

So we want to apply Kakutani's theorem. If the game is finite and we allow mixed
strategies then

- $\Gamma: \Sigma \rightarrow \Sigma$
- Σ is compact: It includes the boundary (pure strategies) and is bounded (the game only has a finite set of strategies)
Σ is convex: By allowing mixed strategies, we automatically make it convex
- $\Gamma\left(s_{1}, \ldots, s_{n}\right)=\left(B R_{1}\left(s_{-1}\right), B R_{2}\left(s_{-2}\right), \ldots, B R_{n}\left(s_{-n}\right)\right)$ is upper semi-continous. Why?
- If two pure strategies are in the best response of a player $\left(s_{i}, s_{j}^{s} \in B R_{i}\left(s_{-i}\right)\right)$, then any

Therefore if $\Gamma\left(s_{1}, \ldots, s_{n}\right)$ has two images, those two images are connected (via all the
mixed strategies that connect those two images)
- That happens to be the definition of upper semi-continous

Lecture 15: Game Theory // Nash equilibrium

Nash's Theorem

Dynamic Games

Lecture 15: Game Theory // Nash equilibrium

Nasth's Theorem

Dynamic Games
Lecture 15: Game Theory // Nash equilibrium
Nash's Theorem
Dynamic Games
\qquad

 ture vilot athers ed before bleq ik

- Fernixen- 2 fpury; stramavi is a complete contingent plan of ac- on at sean incormation set

- Dyramir garcozenome that =aptur a dyramiz alaman in when wma rlayers

 krow what athase rit hrfore play ue in urnution sel

*"one si the oq likia do nor rake murh serss intuitwy

- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- If Firm 1 enters the market, Firm 2 will accommodate
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- The overall idea is that agents must play an optimal action in each node
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- The overall idea is that agents must play an optimal action in each node
- In other words, play an optimal action in each node, conditional on reaching such node
- But (x, f) is a Nash equilibrium only because Firm 2 threatens to do a price war
- But f is not a credible strategy
- If Firm 1 enters the market, Firm 2 will accommodate
- We will study a refinement that will get rid of these type of equilibria
- The overall idea is that agents must play an optimal action in each node
- In other words, play an optimal action in each node, conditional on reaching such
node

In the previous example, f is not optimal if we reach the second period
A natural way to make sure players are optimizing in each node is to solve the
game via backwards induction

- A natural way to make sure players are optimizing in each node is to solve the game via backwards induction
- This amounts to starting from the end of the game, and work the way backwards by eliminating non-optimal strategies
- A natural way to make sure players are optimizing in each node is to solve the game via backwards induction
- This amounts to starting from the end of the game, and work the way backwards by eliminating non-optimal strategies
- A natural way to make sure players are optimizing in each node is to solve the game via backwards induction
- This amounts to starting from the end of the game, and work the way backwards by eliminating non-optimal strategies
Theorem (Zermelo)
every finite game where every information set has a single node (i.e., complete formation), has an Nash equilibrium that can be derived via backwards induction. the payouts to players are different in all terminal nodes, then the Nash equilibrium is
unique.

Thecre:n (Zermelb II)

 firs iow a ain)

- Hasi ma uili aria arr $\langle i P, F, F\}$ and $\{i P$, ,ij. O.
- Bur if the zame mpats $1,0,0$ times i - wo ald be ir ames ale to analyos

Carsiofor the fol oreing zanc

- Can't be solved by backwards induction
- Can't be solved by backwards induction
- Thus, we need something else
- Can't be solved by backwards induction
- Thus, we need something else
- First, we need to defined a subgame

A sub-game, of a game in extensive form, is a sub-tree such that

- It starts in a single node
- If contains a node, it contains all subsequent nodes
- If it contains a node in an information set, it contains all nodes in the information set

Centipede Game

Since in some games (where multiple nodes are in the same information set) we cant
formally choose how people are optimizing, we extend the notion of backwards
induction to subgames
Definition (Subgame perfect Nash equilibria)
A pure strategy profile is a Subgame perfect Nash equilibria (SPNE) if and only if it
involves the play of a NE in every subgame of the game.

Remark

Remark
As in normal form games, mixed strategy SPN can be defined but this is a bit

- The game has 3 NE: ($L B, X),(M A, Y),(M B, Y)$
- The subgame has a single NE: (B,X)
- The SPNE is (LB, X)

