

\square

- This is far from what happens in reality
- When extreme offers like $(900,100)$ are made, player 2 rejects in many cases
- Player 2 may care about inequality or positive utility associated with
"punishment" aversion

Lecture 16: Applications of Subgame Perfect Nash Equilibrium

Ultimatum Game
Alternating offers
Stackelberg Competition

Lecture 16: Applications of Subgame Perfect Nash Equilibrium

Alternating offers
Stackeblecer Competition
\square

- Two players are deciding how to split a pie of size 1
- The players would rather get an agreement today than tomorrow (i.e., discount
factor)
- Player 1 makes an offer θ_{1}

$$
\begin{aligned}
& \lfloor T=3 \\
& \text { - Consider first the game without discounting } \\
& \text { - There is a unique SPNE: } \\
& \} S_{1} \rightarrow G_{1}=1-\partial(1-\infty) \\
& \} \mathrm{S}_{2} \rightarrow A \text { si } 1-\sigma_{1} \geqslant \delta(1-\delta) \rightarrow \sigma_{1} \leq 1-\delta(1-\delta) \\
& \left\{5_{2} \rightarrow \sigma_{2}=\delta \rightarrow P_{A} \cos (\delta \cdot \delta, \delta(1-8))\right. \\
& \}_{5_{1}} A \text { si } \delta \theta_{2} \geqslant \delta^{x}-\theta_{2} \geqslant \delta \\
& \}_{5}, \theta_{3}=1 \rightarrow \operatorname{Pasos}\left(\delta^{2}, 0\right)
\end{aligned}
$$

Lecture 16: Applications of Subgame Perfect Nash Equilibrium
\qquad

- Recall back to the model of Cournot duopoly, where two firms set quantities
- Suppose instead that the firms move in sequence which is called a Stackelberg
- Recall back to the model of Cournot duopoly, where two firms set quantities - Suppose instead that the firms move in sequence which is called a Stackelberg
competition game - Suppose that the inverse demand function is given by:

$$
\left(q_{1}+q_{2}\right) .
$$

\qquad

Te timing of the game is given by: 1. First Firm 1 chooses $q_{1} \geq 0$ 2. Second Firm 2 observes the chosen q_{1} and then chooses q_{2} - The game tree in this game is then depicted by an infinite tree

$$
\begin{aligned}
& S_{2}=\left\{q_{1} \in \mathbb{R}^{+}\right\}, \\
& S_{2}=\left\{f: \mathbb{R}_{\substack{+}}^{\substack{q_{1} \\
q_{1}}} \mathbb{R}_{\substack{+q_{2}}}^{q_{2}}=\right. \\
& \pi_{1}\left(q_{1}, q_{2}\left(q_{1}\right)\right)=P\left(q_{1}+q_{(2)}\right) q_{1}-C_{1}\left(q_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2}\left(q_{1}\right)=r\left(q_{1}+r_{1}+q_{1}\right) t_{1}-\cdots\left(r_{1}\right)\right. \\
& \pi_{2}\left(q_{1}, q_{2}\left(q_{1}\right)\right)=P\left(q_{1}+q_{2}\left(q_{1}\right)\right) q_{2}\left(q_{1}\right)-C_{2}\left(q_{2}\left(q_{1}\right)\right) \\
& C_{1}\left(q_{2}\right)=\left(G_{2}\left(q_{2}\right)=0\right. \\
& P\left(q_{1}+q_{2}\right)=A-q_{1}-q_{2} \\
& E P S
\end{aligned}
$$

EPS:

$$
\begin{aligned}
& \pi_{2}\left(q_{1}, q_{2}\right)=\left(A-q_{1}-q_{2}\right) q_{2} \\
& \frac{\partial \pi_{2}}{\partial q_{2}}=\frac{A-q_{1}-2 q_{2}=0}{\left.\frac{A-q_{1}}{2}=q_{2} q_{1}\right)} \\
& \pi\left(q_{1}, q_{2}\right) \\
& =\left(\frac{\left(A-q_{1}-q_{2}\right) q_{1}}{}=\left(A-q_{1}-\left(\frac{A-q_{1}}{2}\right)\right) q_{1}\right. \\
& \\
& =\left(\frac{A-q_{1}}{2}\right) q_{1} \\
& \frac{\partial \pi_{1}}{\partial q_{1}}
\end{aligned}=\frac{\frac{A-2 q_{1}}{2}=0}{\frac{A}{2}=q_{1}^{x}} .
$$

$$
\frac{\pi}{2}{ }^{2} c_{1}
$$

$$
\begin{aligned}
& \left.\Pi_{1}^{\alpha}=\left(A-q_{1}-q_{2}\right) q_{1}=\left(A-q_{1}-\left(\frac{A-q_{1}}{2}\right)\right) q_{1}=\frac{\left(A-q_{1}\right.}{2}\right) q_{1} \\
& =\left(\frac{A-\frac{A}{2}}{2}\right)\left(\frac{A}{2}\right)=\frac{A^{2}}{8} \\
& \pi_{r}^{x}=\left(A-q_{1}-q_{2}\right) q_{i}=\left(A-q_{1}-\left(\frac{A-q_{1}}{2}\right)\right)\left(\frac{A-q_{1}}{2}\right) \\
& =\left(\frac{A-q_{1}}{2}\right)\left(\frac{A-q_{1}}{2}\right)=\left(\frac{A-q_{1}}{2}\right)^{2}=\left(\frac{A-\frac{A}{2}}{2}\right)^{2}=\frac{A^{2}}{16} \\
& \text { EPS }=\left(S_{1}=\frac{A}{2}, S_{2}=\frac{A-\frac{A}{2}=\frac{A}{4}}{2}\right) \\
& \left(S_{1}=\frac{A}{2}, S_{2}=\frac{A-q_{1}}{2}\right. \\
& \pi_{1}\left(q_{1}, \frac{A}{n}=q_{2}\right)=\left(A-q_{1}-\frac{A}{n}\right) q_{1} \\
& \frac{\partial H_{1}}{\partial q_{1}}=A-2 q_{1}-\frac{A}{4}=0 \\
& \frac{3 A}{n}=2 q \\
& \frac{3 A}{d}=4
\end{aligned}
$$

