Lecture 17: Applications of Subgame Perfect Nash Equilibrium

Mauricio Romero

Lecture 17: Repeated Games

Repeated Games

Lecture 17: Repeated Games

Repeated Games

- Repeated games are often useful for modeling relationships between two or more agents that interact in a strategic situation not just once but over a long period of time
- Repeated games are often useful for modeling relationships between two or more agents that interact in a strategic situation not just once but over a long period of time
- Agent may or may not cooperate with one another even though this may not in the best interest of the agents in the short run through a system of rewards and punishments
- Repeated games are often useful for modeling relationships between two or more agents that interact in a strategic situation not just once but over a long period of time
- Agent may or may not cooperate with one another even though this may not in the best interest of the agents in the short run through a system of rewards and punishments
- A game can repeat itself several times
- Repeated games are often useful for modeling relationships between two or more agents that interact in a strategic situation not just once but over a long period of time
- Agent may or may not cooperate with one another even though this may not in the best interest of the agents in the short run through a system of rewards and punishments
- A game can repeat itself several times
- Static games turn into dynamic by repetition
- Repeated games are often useful for modeling relationships between two or more agents that interact in a strategic situation not just once but over a long period of time
- Agent may or may not cooperate with one another even though this may not in the best interest of the agents in the short run through a system of rewards and punishments
- A game can repeat itself several times
- Static games turn into dynamic by repetition
- We will use $(G, T)$ to denote that game $G$ is repeated $T$ times

1. In period 1 , players simultaneously play the game $G$.
2. In period 1, players simultaneously play the game $G$.
3. Players observe the actions chosen by the players in period 1 . Then in period 2, players simultaneously play the game $G$.
4. In period 1, players simultaneously play the game $G$.
5. Players observe the actions chosen by the players in period 1 . Then in period 2, players simultaneously play the game $G$.
6. This game proceeds until time $T$.
7. In period 1, players simultaneously play the game $G$.
8. Players observe the actions chosen by the players in period 1 . Then in period 2, players simultaneously play the game $G$.
9. This game proceeds until time $T$.
10. After time $T$, if the action profiles chosen in times $1,2, \ldots, T$ are given by $\left(\left(a_{i}^{1}, a_{-i}^{1}\right), \ldots,\left(a_{i}^{T}, a_{-i}^{T}\right)\right):$

$$
\sum_{t=1}^{T} \delta^{t-1} u_{i}\left(a_{i}^{t}, a_{-i}^{t}\right)
$$

Consider the following two-player game:

- Each player $i=1,2$ simultaneously decide whether to play $e_{i}=1$ (work) or $e_{i}=0$ (shirk)

Consider the following two-player game:

- Each player $i=1,2$ simultaneously decide whether to play $e_{i}=1$ (work) or $e_{i}=0$ (shirk)
- Working incurs a cost of 1 however increases the utility of the other player $-i$ by 2

Consider the following two-player game:

- Each player $i=1,2$ simultaneously decide whether to play $e_{i}=1$ (work) or $e_{i}=0$ (shirk)
- Working incurs a cost of 1 however increases the utility of the other player $-i$ by 2
- Thus,

$$
u_{i}\left(e_{i}, e_{-i}\right)=2 e_{-i}-e_{i}
$$

Prisoner's Dilemma (Game $G$ )

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | 1,1 | $-1,2$ |
| $e_{1}=0$ | $2,-1$ | 0,0 |

- What happens when $T=1$
- What happens when $T=1$
- NE: Players 1 and 2 will both choose $\left(e_{1}=0, e_{1}=0\right)$

Imagine players are engaged in a long run relationship that lasts more than just playing the game once: $(G, 2)$

1. Both players play the simultaneous move game $G$.

Imagine players are engaged in a long run relationship that lasts more than just playing the game once: $(G, 2)$

1. Both players play the simultaneous move game $G$.
2. Both players observe the actions chosen by the two players. Then they play $G$ again.

Imagine players are engaged in a long run relationship that lasts more than just playing the game once: $(G, 2)$

1. Both players play the simultaneous move game $G$.
2. Both players observe the actions chosen by the two players. Then they play $G$ again.
3. Then payoffs are realized as the discounted sum of the utilities of the actions in each period with discount factor $\delta \in(0,1]$.

Suppose that the two players chose ( $e_{1}=1, e_{2}=1$ ) in the first period In the second period, they chose $\left(e_{1}=0, e_{2}=1\right)$

Suppose that the two players chose ( $e_{1}=1, e_{2}=1$ ) in the first period In the second period, they chose $\left(e_{1}=0, e_{2}=1\right)$

$$
\begin{aligned}
& u_{1}=1+\delta \cdot 2 \\
& u_{2}=1+\delta \cdot(-1) .
\end{aligned}
$$

- We will solve for the set of pure SPNE of this game.
- We will solve for the set of pure SPNE of this game.
- Player 1 has 5 information sets in total
- We will solve for the set of pure SPNE of this game.
- Player 1 has 5 information sets in total
- A pure strategy for player 1 must specify what he does in each of these information sets
- We will solve for the set of pure SPNE of this game.
- Player 1 has 5 information sets in total
- A pure strategy for player 1 must specify what he does in each of these information sets
- Player 1 has a total of $32\left(2^{5}\right)$ pure strategies
- We will solve for the set of pure SPNE of this game.
- Player 1 has 5 information sets in total
- A pure strategy for player 1 must specify what he does in each of these information sets
- Player 1 has a total of $32\left(2^{5}\right)$ pure strategies
- Similarly, player 2 has a total of 32 pure strategies
- There are 5 subgames

- There are 5 subgames
- Start at the end of the game (i.e., $T=2$ )

- There are 5 subgames
- Start at the end of the game (i.e., $T=2$ )
- The first subgame that we will analyze is the one that the players encounter after having play $\left(e_{1}^{1}=0, e_{2}^{1}=0\right)$ in $T=1$ :


The Nash equilibria can be seen by writing out the normal form of the game.
Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | $\delta, \delta$ | $-\delta, 2 \delta$ |
| $e_{1}=0$ | $2 \delta,-\delta$ | 0,0 |

- This game has a unique Nash equilibrium in which the players play $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$
- This game has a unique Nash equilibrium in which the players play $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$
- Therefore after having observed $\left(e_{1}^{1}=0, e_{2}^{1}=0\right)$ in the first period, both players will play $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ in period 2

Consider the subgame following a play of $\left(e_{1}^{1}=1, e_{2}^{1}=0\right)$ in the first period. The extensive form of this subgame is given by:


The normal form of this subgame can be seen in the Table
Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | $-1+\delta, 2+\delta$ | $-1-\delta, 2+2 \delta$ |
| $e_{1}=0$ | $-1+2 \delta, 2-\delta$ | $-1,2$ |

- $\left(e_{1}=0, e_{2}=0\right)$ is the unique $N$ ash equilibrium
- $\left(e_{1}=0, e_{2}=0\right)$ is the unique Nash equilibrium
- In any SPNE, $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ must be played after observing $\left(e_{1}^{1}=1, e_{2}^{1}=0\right)$
- We can go through the remaining smaller subgames after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=0$ ) and after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=1$ )
- We can go through the remaining smaller subgames after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=0$ ) and after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=1$ )
- We will reach the same conclusion in each of these scenarios: that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ must be played in each of these subgames
- We can go through the remaining smaller subgames after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=0$ ) and after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=1$ )
- We will reach the same conclusion in each of these scenarios: that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ must be played in each of these subgames
- Regardless of the observed action, $(0,0)$ is played in period 2
- We can go through the remaining smaller subgames after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=0$ ) and after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=1$ )
- We will reach the same conclusion in each of these scenarios: that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ must be played in each of these subgames
- Regardless of the observed action, $(0,0)$ is played in period 2
- Why is this the case?
- We can go through the remaining smaller subgames after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=0$ ) and after the observation of ( $e_{1}^{1}=1, e_{2}^{1}=1$ )
- We will reach the same conclusion in each of these scenarios: that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ must be played in each of these subgames
- Regardless of the observed action, $(0,0)$ is played in period 2
- Why is this the case?
- The idea is that payoffs that have accrued in period 1 are essentially sunk, and have no influence on incentives in period 2

To see this consider the normal form representation in the subgame after the observation of $\left(e_{1}^{1}=1, e_{2}^{1}=0\right)$

Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | $-1+\delta, 2+\delta$ | $-1-1 \delta, 2+2 \delta$ |
| $e_{1}=0$ | $-1+2 \delta, 2-\delta$ | $-1,2$ |

- We can subtract off the payoff that player 1 received in period 1 and divide through player 1 's payoffs by $\delta$ to obtain the following payoff matrix

Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | 1,1 | $-1,2$ |
| $e_{1}=0$ | $2,-1$ | 0,0 |

- We can subtract off the payoff that player 1 received in period 1 and divide through player 1 's payoffs by $\delta$ to obtain the following payoff matrix
- We can do the same thing for player 2's payoffs and get the payoff matrix

Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | 1,1 | $-1,2$ |
| $e_{1}=0$ | $2,-1$ | 0,0 |

- We've just performed affine transformations of each person's utility functions
- We've just performed affine transformations of each person's utility functions
- This payoff matrix is equivalent from a strategic perspective from the original normal
- We've just performed affine transformations of each person's utility functions
- This payoff matrix is equivalent from a strategic perspective from the original normal
- Thus the set of Nash equilibria will remain unchanged after these transformations
- We've just performed affine transformations of each person's utility functions
- This payoff matrix is equivalent from a strategic perspective from the original normal
- Thus the set of Nash equilibria will remain unchanged after these transformations
- This normal form is just the original prisoner's dilemma
- We've just performed affine transformations of each person's utility functions
- This payoff matrix is equivalent from a strategic perspective from the original normal
- Thus the set of Nash equilibria will remain unchanged after these transformations
- This normal form is just the original prisoner's dilemma
- This will be true no matter the action profile played in period 1
- So what have we learned?
- So what have we learned?
- Basically after any history, the strategic normal form is essentially the same as the original prisoner's dilemma
- So what have we learned?
- Basically after any history, the strategic normal form is essentially the same as the original prisoner's dilemma
- Both players play $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ after any information set in the last period
- Now let us see what must be played in the first period by the two players
- Now let us see what must be played in the first period by the two players
- Both players anticipate that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ will be played after any chosen action profile in the first period
- Now let us see what must be played in the first period by the two players
- Both players anticipate that $\left(e_{1}^{2}=0, e_{2}^{2}=0\right)$ will be played after any chosen action profile in the first period
- We can simplify the extensive form game to the following:


If we draw the normal form of this game, then we get:

> Normal Form of Extensive Form

|  | $e_{2}=1$ | $e_{2}=0$ |
| :---: | :---: | :---: |
| $e_{1}=1$ | 1,1 | $-1,2$ |
| $e_{1}=0$ | $2,-1$ | 0,0 |

The unique Nash equilibrium of the above normal form game is $\left(e_{1}^{1}=0, e_{2}^{1}=0\right)$

Therefore the unique SPNE is:

$$
\left(\left(\begin{array}{ll} 
& e_{1}^{2}=0 \\
e_{1}^{1}=0 & e_{1}^{2}=0 \\
& e_{1}^{2}=0 \\
& e_{1}^{2}=0
\end{array}\right),\left(\quad \begin{array}{l}
e_{2}^{2}=0 \\
e_{2}^{1}=0 \\
e_{2}^{2}=0 \\
e_{2}^{2}=0 \\
\\
e_{2}^{2}=0
\end{array}\right)\right)
$$

In other words both players always shirk

- Here the unique SPNE requires all players to play $e_{i}=0$ at all periods and all information sets
- Here the unique SPNE requires all players to play $e_{i}=0$ at all periods and all information sets
- Thus, the equilibrium outcome is simply the repetition of the unique NE of the stage game
- Here the unique SPNE requires all players to play $e_{i}=0$ at all periods and all information sets
- Thus, the equilibrium outcome is simply the repetition of the unique NE of the stage game
- This holds more generally when the stage game has a unique NE
- Here the unique SPNE requires all players to play $e_{i}=0$ at all periods and all information sets
- Thus, the equilibrium outcome is simply the repetition of the unique NE of the stage game
- This holds more generally when the stage game has a unique NE
- Whenever the stage game has a unique NE, then the only SPNE of a finite horizon repeated game with that stage game is the repetition of the stage game NE


## Theorem

Suppose that the stage game $G$ has exactly one NE, $\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right)$. Then for any $\delta \in(0,1]$ and any $T$, the $T$-times repeated game has a unique SPNE in which all players $i$ play $a_{i}^{*}$ at all information sets.

- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- In the last period, the incentives of all players are exactly the same as if the game were being played once
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- In the last period, the incentives of all players are exactly the same as if the game were being played once
- Thus all players must play the stage game Nash equilibrium action regardless of the history of play up to that point
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- In the last period, the incentives of all players are exactly the same as if the game were being played once
- Thus all players must play the stage game Nash equilibrium action regardless of the history of play up to that point
- But then we can induct
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- In the last period, the incentives of all players are exactly the same as if the game were being played once
- Thus all players must play the stage game Nash equilibrium action regardless of the history of play up to that point
- But then we can induct
- Knowing that the stage game Nash equilibrium is going to be played tomorrow, at any information set, we can ignore the past payoffs
- The basic idea of the proof for this proposition is exactly the same that we saw in the repeated prisoner's dilemma
- All past payoffs are sunk
- In the last period, the incentives of all players are exactly the same as if the game were being played once
- Thus all players must play the stage game Nash equilibrium action regardless of the history of play up to that point
- But then we can induct
- Knowing that the stage game Nash equilibrium is going to be played tomorrow, at any information set, we can ignore the past payoffs
- We concentrate just on the payoffs in the future. Thus in period $T-1$, player $i$ simply wants to maximize:

$$
\max _{a_{i} \in A_{i}} \delta^{T-2} u_{i}\left(a_{i}, a_{-i}^{T-1}\right)+\delta^{T-1} u_{i}\left(a^{*}\right)
$$

- What player $i$ plays today has no consequences for what happens in period $T$ since we saw that all players will play $a^{*}$ no matter what happens in period $T-1$
- What player $i$ plays today has no consequences for what happens in period $T$ since we saw that all players will play $a^{*}$ no matter what happens in period $T-1$
- So, the maximization problem above is the same as:

$$
\max _{a_{i} \in A_{i}} u_{i}\left(a_{i}, a_{-i}^{T-1}\right) .
$$

- What player $i$ plays today has no consequences for what happens in period $T$ since we saw that all players will play $a^{*}$ no matter what happens in period $T-1$
- So, the maximization problem above is the same as:

$$
\max _{a_{i} \in A_{i}} u_{i}\left(a_{i}, a_{-i}^{T-1}\right) .
$$

- Thus again, for this to be a Nash equilibrium, we need $a_{1}^{T-1}=a_{1}^{*}, \ldots, a_{n}^{T-1}=a_{n}^{*}$.
- What player $i$ plays today has no consequences for what happens in period $T$ since we saw that all players will play $a^{*}$ no matter what happens in period $T-1$
- So, the maximization problem above is the same as:

$$
\max _{a_{i} \in A_{i}} u_{i}\left(a_{i}, a_{-i}^{T-1}\right) .
$$

- Thus again, for this to be a Nash equilibrium, we need $a_{1}^{T-1}=a_{1}^{*}, \ldots, a_{n}^{T-1}=a_{n}^{*}$.
- Following exactly this induction, we can conclude that every player must play $a_{i}^{*}$ at all times and all histories

