Lecture 19: Infinitely Repeated Games

Mauricio Romero

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games

- One of the features of finitely repeated games was that if the stage game had a unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium
- One of the features of finitely repeated games was that if the stage game had a unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium
- This happened because there was a last period from which we could induct backwards (and there was a domino effect!)
- One of the features of finitely repeated games was that if the stage game had a unique Nash equilibrium, then the only subgame perfect Nash equilibrium was the repetition of that unique stage game Nash equilibrium
- This happened because there was a last period from which we could induct backwards (and there was a domino effect!)
- When the game is instead infinitely repeated, this argument no longer applies since there is no such thing as a last period
- Lets first define what an infinitely repeated game is
- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by $u_{1}, u_{2}, \ldots, u_{n}$
- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by $u_{1}, u_{2}, \ldots, u_{n}$
- Each player i has an action set A_{i}
- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by $u_{1}, u_{2}, \ldots, u_{n}$
- Each player i has an action set A_{i}
- In each period $t=0,1,2, \ldots$, players simultaneously choose an action $a_{i} \in A_{i}$ and the chosen action profile $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is observed by all players
- Lets first define what an infinitely repeated game is
- We start with a stage game whose utilities are given by $u_{1}, u_{2}, \ldots, u_{n}$
- Each player i has an action set A_{i}
- In each period $t=0,1,2, \ldots$, players simultaneously choose an action $a_{i} \in A_{i}$ and the chosen action profile $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is observed by all players
- Then play moves to period $t+1$ and the game continues in the same manner.
- It is impossible to draw the extensive form of this infinitely repeated game
- It is impossible to draw the extensive form of this infinitely repeated game
- Each information set of each player i associated with a finitely repeated game corresponded to a history of action profiles chosen in the past
- It is impossible to draw the extensive form of this infinitely repeated game
- Each information set of each player i associated with a finitely repeated game corresponded to a history of action profiles chosen in the past
- We can represent each information set of player i by a history:

$$
h^{0}=(\emptyset), h^{1}=\left(a^{0}:=\left(a_{1}^{0}, \ldots, a_{n}^{0}\right)\right), \ldots, h^{t}=\left(a^{0}, a^{1}, \ldots, a^{t-1}\right)
$$

- It is impossible to draw the extensive form of this infinitely repeated game
- Each information set of each player i associated with a finitely repeated game corresponded to a history of action profiles chosen in the past
- We can represent each information set of player i by a history:

$$
h^{0}=(\emptyset), h^{1}=\left(a^{0}:=\left(a_{1}^{0}, \ldots, a_{n}^{0}\right)\right), \ldots, h^{t}=\left(a^{0}, a^{1}, \ldots, a^{t-1}\right)
$$

- We denote the set of all histories at time t as H^{t}

Prisoner's Dilemma

	C_{2}	D_{2}
C_{1}	1,1	$-1,2$
D_{1}	$2,-1$	0,0

- For example, if the stage game is the prisoner's dilemma, at period 1 , there are 4 possible histories:

$$
\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}
$$

- For example, if the stage game is the prisoner's dilemma, at period 1 , there are 4 possible histories:

$$
\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}
$$

- For time t, H^{t} consists of 4^{t} possible histories
- For example, if the stage game is the prisoner's dilemma, at period 1 , there are 4 possible histories:

$$
\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}
$$

- For time t, H^{t} consists of 4^{t} possible histories
- This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree
- For example, if the stage game is the prisoner's dilemma, at period 1 , there are 4 possible histories:

$$
\left\{\left(C_{1}, C_{2}\right),\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(D_{1}, D_{2}\right)\right\}=H^{1}
$$

- For time t, H^{t} consists of 4^{t} possible histories
- This means that there is a one-to-one mapping between all possible histories and the information sets if we actually wrote out the whole extensive form game tree
- As a result, we can think of each $h^{t} \in H^{t}$ as representing a particular information set for each player i in each time t
- What is a strategy in an infinitely repeated game?
- What is a strategy in an infinitely repeated game?
- It is simply a prescription of what player i would do at every information set or history
-What is a strategy in an infinitely repeated game?
- It is simply a prescription of what player i would do at every information set or history
- Therefore, it is a function that describes:

$$
s_{i}: \bigcup_{t \geq 0} H^{t} \rightarrow A_{i}
$$

-What is a strategy in an infinitely repeated game?

- It is simply a prescription of what player i would do at every information set or history
- Therefore, it is a function that describes:

$$
s_{i}: \bigcup_{t \geq 0} H^{t} \rightarrow A_{i}
$$

- Intuitively, s_{i} describes exactly what player i would do at every possible history h^{t}, where $s_{i}\left(h^{t}\right)$ describes what player i would do at history h^{t}
- For example in the infinitely repeated prisoner's dilemma, the strategy $s_{i}\left(h^{t}\right)=C_{i}$ for all h^{t} and all t is the strategy in which player i always plays C_{i} regardless of the history
- For example in the infinitely repeated prisoner's dilemma, the strategy $s_{i}\left(h^{t}\right)=C_{i}$ for all h^{t} and all t is the strategy in which player i always plays C_{i} regardless of the history
- There can be more complicated strategies such as the following:

$$
s_{i}\left(h^{t}\right)= \begin{cases}C_{i} & \text { if } t=0 \text { or } h^{t}=(C, C, \ldots, C) \\ D_{i} & \text { otherwise }\end{cases}
$$

- For example in the infinitely repeated prisoner's dilemma, the strategy $s_{i}\left(h^{t}\right)=C_{i}$ for all h^{t} and all t is the strategy in which player i always plays C_{i} regardless of the history
- There can be more complicated strategies such as the following:

$$
s_{i}\left(h^{t}\right)= \begin{cases}C_{i} & \text { if } t=0 \text { or } h^{t}=(C, C, \ldots, C) \\ D_{i} & \text { otherwise }\end{cases}
$$

- The above is called a grim trigger strategy
- How are payoffs determined in the repeated game?
- How are payoffs determined in the repeated game?
- Suppose the strategies s_{1}, \ldots, s_{n} are played which lead to the infinite sequence of action profiles:

$$
a^{0}, a^{1}, \ldots, a^{t}, a^{t+1}, \ldots
$$

- How are payoffs determined in the repeated game?
- Suppose the strategies s_{1}, \ldots, s_{n} are played which lead to the infinite sequence of action profiles:

$$
a^{0}, a^{1}, \ldots, a^{t}, a^{t+1}, \ldots
$$

- Then the payoff of player i in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t} u_{i}\left(a^{t}\right)
$$

- How are payoffs determined in the repeated game?
- Suppose the strategies s_{1}, \ldots, s_{n} are played which lead to the infinite sequence of action profiles:

$$
a^{0}, a^{1}, \ldots, a^{t}, a^{t+1}, \ldots
$$

- Then the payoff of player i in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t} u_{i}\left(a^{t}\right)
$$

- Intuitively, the contribution to payoff of time t action profile a^{t} is discounted by δ^{t}
- It may be unreasonable to think about an infinitely repeated game
- It may be unreasonable to think about an infinitely repeated game
- However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time.
- It may be unreasonable to think about an infinitely repeated game
- However the discount factor instead could be interpreted by the probability of the game/relationship ending at any point in time.
- Thus, an infinitely repeated game does not necessarily represent a scenario in which there are an infinite number of periods, but rather a relationship which ends in finite time with probability one, but in which the time at which the relationship ends is uncertain
- Lets see some examples of how to compute payoffs in the repeated game
- Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_{i}\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all h^{t}.
- Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_{i}\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all h^{t}.
- In this case, the payoff of player 1 in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t}=\frac{1}{1-\delta}
$$

- Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_{i}\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all h^{t}.
- In this case, the payoff of player 1 in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t}=\frac{1}{1-\delta}
$$

- What about in the grim trigger strategy profile?
- Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_{i}\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all h^{t}.
- In this case, the payoff of player 1 in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t}=\frac{1}{1-\delta}
$$

- What about in the grim trigger strategy profile?
- In that case, if all players play the grim trigger strategy profile, the sequence of actions that arise is again (C, C, \ldots)
- Lets see some examples of how to compute payoffs in the repeated game
- Consider first the strategy profile in which $s_{i}\left(h^{t}\right)=C_{i}$ for all $i=1,2$ and all h^{t}.
- In this case, the payoff of player 1 in this repeated game is given by:

$$
\sum_{t=0}^{\infty} \delta^{t}=\frac{1}{1-\delta}
$$

- What about in the grim trigger strategy profile?
- In that case, if all players play the grim trigger strategy profile, the sequence of actions that arise is again (C, C, \ldots)
- Thus the payoffs of all players is again $\frac{1}{1-\delta}$.
- How about a more complicated strategy profile?
- How about a more complicated strategy profile?
- Suppose that $s_{i}\left(h^{0}\right)=\left(C_{1}, D_{2}\right)$ and the strategy profile says to do exactly what the opponent did in the previous period
- How about a more complicated strategy profile?
- Suppose that $s_{i}\left(h^{0}\right)=\left(C_{1}, D_{2}\right)$ and the strategy profile says to do exactly what the opponent did in the previous period
- Then if both players play these strategies, then the sequence of actions that arise is:

$$
\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(C_{1}, D_{2}\right), \ldots
$$

- How about a more complicated strategy profile?
- Suppose that $s_{i}\left(h^{0}\right)=\left(C_{1}, D_{2}\right)$ and the strategy profile says to do exactly what the opponent did in the previous period
- Then if both players play these strategies, then the sequence of actions that arise is:

$$
\left(C_{1}, D_{2}\right),\left(D_{1}, C_{2}\right),\left(C_{1}, D_{2}\right), \ldots
$$

- Then the payoff to player 1 in this game is given by:

$$
\sum_{t=0}^{\infty} \delta^{2 t}(-1)+\delta^{2 t+1} \cdot 2=\frac{-1}{1-\delta^{2}}+\frac{2 \delta}{1-\delta^{2}}=\frac{2 \delta-1}{1-\delta^{2}}
$$

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games
Subgame Perfect Nash Equilibrium
Examples

- What is a subgame perfect Nash equilibrium in an infinitely repeated game?
- What is a subgame perfect Nash equilibrium in an infinitely repeated game?
- It is exactly the same idea as in the finitely repeated game or more generally extensive form games
- What is a subgame perfect Nash equilibrium in an infinitely repeated game?
- It is exactly the same idea as in the finitely repeated game or more generally extensive form games
- That is a strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ is a subgame perfect game Nash equilibrium if and only if s is a Nash equilibrium in every subgame of the repeated game.

Theorem (One-stage deviation principle)
s is a subgame perfect Nash equilibrium (SPNE) if and only if at every time t, and every history and every player i, player i cannot profit by deviating just at time t and following the strategy s_{i}^{\prime} from time $t+1$ on

- This is extremely useful since we only need to check that s_{i} is optimal against all possible one-stage deviations rather than having to check that it is optimal against all s_{i}^{\prime}.
- This is extremely useful since we only need to check that s_{i} is optimal against all possible one-stage deviations rather than having to check that it is optimal against all s_{i}^{\prime}.
- We will now put this into practice to analyze subgame perfect Nash equilibria of infinitely repeated games

Lecture 19: Infinitely Repeated Games

Introduction to Infinitely Repeated Games
Subgame Perfect Nash Equilibrium
Examples

- Lets go back to the infinitely repeated prisoner's dilemma
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2} always at all information sets
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2} always at all information sets
- Why is this a SPNE?
- Lets go back to the infinitely repeated prisoner's dilemma
- What is an example of a subgame perfect Nash equilibrium?
- One kind of equilibrium should be straightforward: each player plays D_{1} and D_{2} always at all information sets
- Why is this a SPNE?
- We can use the one-stage deviation principle

Prisoner's Dilemma

	C_{2}	D_{2}
C_{1}	1,1	$-1,2$
D_{1}	$2,-1$	0,0

- Under this strategy profile s_{1}^{*}, s_{2}^{*}, for all histories h^{t},

$$
V_{1}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=V_{2}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=0 .
$$

- Under this strategy profile s_{1}^{*}, s_{2}^{*}, for all histories h^{t},

$$
V_{1}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=V_{2}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=0 .
$$

- Thus, for all histories h^{t},

$$
\underbrace{u_{i}\left(D_{i}, D_{-i}\right)}_{0}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}>\underbrace{u_{i}\left(C_{i}, D_{-i}\right)}_{-1}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}
$$

- Under this strategy profile s_{1}^{*}, s_{2}^{*}, for all histories h^{t},

$$
V_{1}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=V_{2}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)=0 .
$$

- Thus, for all histories h^{t},

$$
\underbrace{u_{i}\left(D_{i}, D_{-i}\right)}_{0}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}>\underbrace{u_{i}\left(C_{i}, D_{-i}\right)}_{-1}+\delta \underbrace{V_{i}\left(s_{1}^{*}, s_{2}^{*} \mid h^{t}\right)}_{0}
$$

- Thus, $\left(s_{1}^{*}, s_{2}^{*}\right)$ is a SPNE

In fact this is not specific to the prisoner's dilemma as we show below:

Theorem

Let a* be a Nash equilibrium of the stage game. Then the strategy profile s* in which all players i play a_{i}^{*} at all information sets is a SPNE for any $\delta \in[0,1)$.

- What other kinds of SPNE are there?
- What other kinds of SPNE are there?
- In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium
- What other kinds of SPNE are there?
- In finitely repeated games, this was the only SPNE with prisoner's dilemma since the stage game had a unique Nash equilibrium
- When the repeated game is infinitely repeated, this is no longer true
- Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$
s_{i}^{*}\left(h^{t}\right)= \begin{cases}C_{i} & \text { if } h^{t}=(C, C, \ldots, C) \\ D_{i} & \text { if } h^{t} \neq(C, C, \ldots, C) .\end{cases}
$$

- Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$
s_{i}^{*}\left(h^{t}\right)= \begin{cases}C_{i} & \text { if } h^{t}=(C, C, \ldots, C) \\ D_{i} & \text { if } h^{t} \neq(C, C, \ldots, C) .\end{cases}
$$

- We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE
- Consider for example the grim trigger strategy profile that we discussed earlier. Each player plays the following strategy:

$$
s_{i}^{*}\left(h^{t}\right)= \begin{cases}C_{i} & \text { if } h^{t}=(C, C, \ldots, C) \\ D_{i} & \text { if } h^{t} \neq(C, C, \ldots, C) .\end{cases}
$$

- We will show that if δ is sufficiently high, so that the players are sufficiently patient, the strategy profile of grim trigger strategies is indeed a SPNE
- The equilibrium path of play for this SPNE is for players to play C in every period
- How do we show that the above is indeed an SPNE?
- How do we show that the above is indeed an SPNE?
- We use the one-stage deviation principle again
- How do we show that the above is indeed an SPNE?
- We use the one-stage deviation principle again
- We need to check the one-stage deviation principle at every history h^{t}.

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right) \\
& \geq u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)
\end{aligned}
$$

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right) \\
& \geq u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)
\end{aligned}
$$

- But since $h^{t} \neq(C, C, \ldots, C)$,
$V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right)$.

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right) \\
& \geq u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)
\end{aligned}
$$

- But since $h^{t} \neq(C, C, \ldots, C)$,
$V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right)$.
- So the above inequality is satisfied if and only if

$$
u_{i}\left(D_{i}, D_{-i}\right) \geq u_{i}\left(C_{i}, D_{-i}\right)
$$

Case 1:

- Suppose first that $h^{t} \neq(C, C, \ldots, C)$
- Players are each suppose to play D_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(D_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right) \\
& \geq u_{i}\left(C_{i}, D_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)
\end{aligned}
$$

- But since $h^{t} \neq(C, C, \ldots, C)$,
$V_{i}\left(s^{*} \mid\left(h^{t}, D\right)\right)=V_{i}\left(s^{*} \mid\left(h^{t},\left(C_{i}, D_{-i}\right)\right)\right)=u_{i}\left(D_{i}, D_{-i}\right)$.
- So the above inequality is satisfied if and only if

$$
u_{i}\left(D_{i}, D_{-i}\right) \geq u_{i}\left(C_{i}, D_{-i}\right)
$$

- But this is satisfied since D is a Nash equilibrium of the stage game

Case 2：

－Suppose instead that $h^{t}=(C, C, \ldots, C)$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)
\end{aligned}
$$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
& V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)=u_{i}\left(C_{i}, C_{-i}\right) \\
& =1, V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0 .
\end{aligned}
$$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
& V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)=u_{i}\left(C_{i}, C_{-i}\right) \\
& =1, V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0
\end{aligned}
$$

- Therefore, the above is satisfied if and only if

$$
1+\delta \geq 2 \Longleftrightarrow \delta \geq 1 / 2
$$

Case 2:

- Suppose instead that $h^{t}=(C, C, \ldots, C)$
- Players are both supposed to play C_{i}
- Thus, we need to check that

$$
\begin{aligned}
& u_{i}\left(C_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right) \\
& \geq u_{i}\left(D_{i}, C_{-i}\right)+\delta V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)
\end{aligned}
$$

- In this case,

$$
\begin{aligned}
& V_{i}\left(s^{*} \mid\left(h^{t}, C\right)\right)=u_{i}\left(C_{i}, C_{-i}\right) \\
& =1, V_{i}\left(s^{*} \mid\left(h^{t},\left(D_{i}, C_{-i}\right)\right)\right)=u_{i}(D)=0
\end{aligned}
$$

- Therefore, the above is satisfied if and only if

$$
1+\delta \geq 2 \Longleftrightarrow \delta \geq 1 / 2
$$

- Thus the grim trigger strategy profile s^{*} is a SPNE if and only if $\delta \geq 1 / 2$.
- The above findings that SPNE may involve the repetition of action profile that is not a stage game NE is not specific to just the infinitely repeated prisoner's dilemma as the following theorem demonstrates.

Theorem (Folk theorem)

Suppose that a^{*} is a Nash equilibrium of the stage game. Suppose that \hat{a} is an action profile of the Nash equilibrium such that

$$
u_{1}(\hat{a})>u_{1}\left(a^{*}\right), \ldots, u_{n}(\hat{a})>u_{n}\left(a^{*}\right) .
$$

Then there is some $\delta^{*}<1$ such that whenever $\delta>\delta^{*}$, there is a SPNE in which on the equilibrium path of play, all players play â in every period.

