Lecture1

Tuesday, January 25, 2022 1:32 PM

Lecture1

Lecture 1: General Equilibrium

Mauricio Romero

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 かくで

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

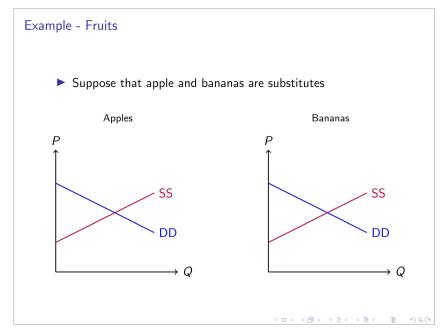
←□ ト ←□ ト ← □ ⊢ ← □ ⊢ ←

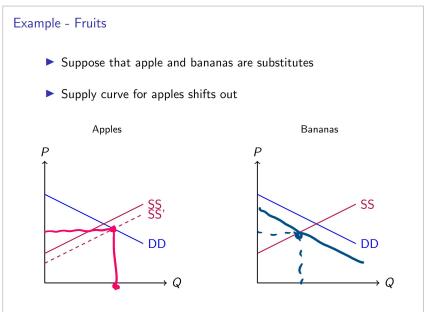
Introduction Pure Exchange Economies Pareto efficiency Edgeworth Box

Previous classes

- ► Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- ▶ When analyzed together, each market was viewed in isolation

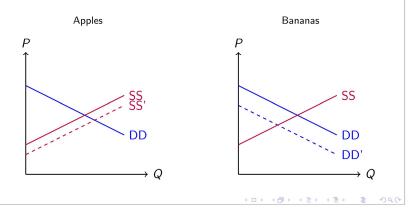
Previous classes

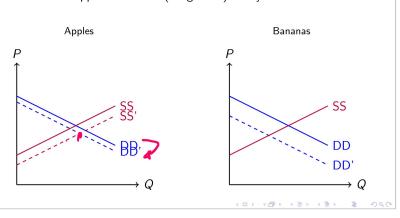

- ► Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- ▶ When analyzed together, each market was viewed in isolation
- ▶ But markets are often intertwined



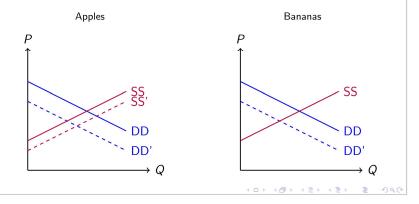
Previous classes

- ► Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- ▶ When analyzed together, each market was viewed in isolation
- ► But markets are often intertwined
 - ► Transportation: Uber/metro/ecobici/car
 - ► Wages across sectors
 - ► Fruits
 - ► Beer and tacos




Example - Fruits

- ► Suppose that apple and bananas are substitutes
- ► Supply curve for apples shifts out
- ▶ DD for bananas decreases (exogenous)


Example - Fruits

- ▶ Suppose that apple and bananas are substitutes
- ► Supply curve for apples shifts out
- ▶ DD for bananas decreases (exogenous)
- ▶ DD for apples decreases (exogenous) maybe a little

Example - Fruits

- ► Suppose that apple and bananas are substitutes
- ► Supply curve for apples shifts out
- ▶ DD for bananas decreases (exogenous)
- ▶ DD for apples decreases (exogenous) maybe a lot

Example - Fruits

▶ What happens if apple and bananas are complements?

A tour down memory lane

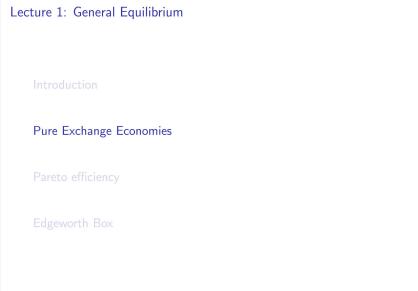
- Léon Walras started it all (1834-1910)
 - First to use mathematical tools in economics
 - Supply and demand curves as solutions to a maximization problem
 - Started the "marginal revolution"
- ► Walras was ultimately after normative questions (is the market economy good?)
- ▶ But first, he tackled positive questions (is there an equilibrium? is it unique?)
- ▶ Made a lot of progress. In particular came up with "Walras Law": Sum of the values of excess demands across all markets must equal zero always

A tour down memory lane

- ▶ Vilfredo Pareto was Walras student (1848-1923)
 - ► Abandoned utilitarianism (i.e., utility functions)
 - ► Embraced "preferences"
 - Utility functions only have ordinal content
 - ► Comparing "utils" across individuals is meaningless
 - (Pareto) optimum/efficiency: Achieved if we can't make someone better-off without making someone worst-off

A tour down memory lane

- ► Francis Edgeworth (1845 1926)
 - ► Introduced indifference curves
 - ▶ Was the first to ask: Where will voluntary exchange lead to?
 - ▶ He conjecture his result was aligned with Walras' result



A tour down memory lane

- No more advances for a while (until 1950's) then
 - ► Kenneth Arrow
 - ► Gerard Debreu
 - ► Lionel McKenzie
- Existence
- ► Showed it was Pareto efficient
- ► Two Nobel prizes (Arrow 1972 and Debreu 1974)

Lecture 1: General Equilibrium	
Introduction	
Pure Exchange Economies	
Pareto efficiency	
Edgeworth Box	
	4D>4B>4B>4B>4B>

4日と4回と4回と4回と 回 めんの

Pure Exchange Economies

- ► How are goods distributed among consumers?
- ▶ What incentives are there to exchange goods? What institutions mediate the exchange?
- ▶ Is there a distribution of goods that leaves everyone satisfied and there aren't any incentives to deviate?

Pure Exchange Economies

- ▶ What are the properties of such an equilibrium?
 - ► Is it unique?
 - ► Is it stable?
 - ► Is it efficient?

Pure Exchange Economies

- ► Assume there are
 - ightharpoonup I consumers, $\mathcal{I} = \{1, ..., I\}$
 - ightharpoonup L goods, $\mathcal{L} = \{1, ..., L\}$
 - Each consumer *i* is characterized by a utility function u^i .
 - ightharpoonup Each consumer can consume goods in $x_i \in
 ightharpoonup$
 - $lackbox{ Each consumer has an initial endowment of } w^i \in \mathbb{R}_+^L.$
 - **Each** consumer is characterized by the pair: (u^i, w^i) .
 - ► Assume the utility functions represent neoclassic preferences

(Xi, Xi, --, Ki

Utility functions and neoclassic preferences

► A brief reminder

Utility functions and neoclassic preferences

- ► A brief reminder
- ▶ Utility functions are ordinal not cardinal

4D + 4B + 4B + 4D +

Utility functions and neoclassic preferences

- ► A brief reminder
- ▶ Utility functions are ordinal not cardinal
- ► They are used to represent preferences

10) (B) (E) (E) E 990

Utility functions and neoclassic preferences

- ► A brief reminder
- ▶ Utility functions are ordinal not cardinal
- ► They are used to represent preferences
 - ▶ If $x \succ_i y$ then $u^i(x) > u^i(y)$
 - ▶ If f is any increasing function then $f(u^i(x)) > f(u^i(y))$
 - ▶ Hence $f(u^i(\cdot))$ also represents \succ_i
 - $u^i(x) > u^i(y)$ means something, but $u^i(x) u^i(y)$ does not
- ► Neoclassic preferences are well behaved

Utility functions and neoclassic preferences

- A brief reminder
- ▶ Utility functions are ordinal not cardinal
- ► They are used to represent preferences

 - ▶ If f is any increasing function then $f(u^i(x)) > f(u^i(y))$
 - ▶ Hence $f(u^i(\cdot))$ also represents \succ_i
 - $u^i(x) > u^i(y)$ means something, but $u^i(x) u^i(y)$ does not
- ► Neoclassic preferences are well behaved
 - ► They can be represented by a utility function
 - ► They are weakly monotonic
 - ► They are quasi-concave

Ln X'by

elixiby

xby

Pure Exchange Economies

set of agents, u^i is a representation of consumer i's preferences and w^i is consumer i's initial endowment.

- Let $\underline{w} = \sum_{i=1}^{r} w^{i}$ be the total endowment of the economy.
- An allocation of resources is denoted by $x = (x^1, x^2, ..., x^I)$ where $x^i \in \mathbb{R}_+^I$.

Pure Exchange Economies

Definition (Feasible allocation)

The set of feasible allocation F of an economy $\mathcal{E} = \left\langle \mathcal{I}, \left(u^i, w^i \right)_{i \in \mathcal{I}} \right\rangle$ is defined by:

$$F = \left\{ x = (x^{1}, x^{2}, ..., x^{I}) : x^{I} \in \mathbb{R}^{L}_{+}, \sum_{i=1}^{I} x^{i} \leq \sum_{i=1}^{I} w^{i} \right\}$$

Lecture 1: General Equilibrium	
Introduction	
Pure Exchange Economies	
Pareto efficiency	
Edgeworth Box	
	(마) (를) (를) (를) 영(C

Lecture 1: General Equilibrium

Introduction

Pure Exchange Economies

Pareto efficiency

Edgeworth Box

4 D > 4 B > 4 E > E 990

Pareto efficiency

Let $\mathcal E$ be an economy. A feasible allocation of resources $x=(x^1,x^2,...,x^I)$ is Pareto efficient if there isn't another feasible allocation $\widehat x=(\widehat x^1,\widehat x^2,...,\widehat x^I)$ such that for every agent i, $u^i(\widehat x^i)\geq u^i(x^i)$ and for at least one agent i^* , $u^{i^*}(\widehat x^{i^*})>u^{i^*}(x^{i^*})$.

Pareto efficiency

Definition (Pareto domination)

Take two feasible allocations x and \hat{x} . We say that \hat{x} Pareto dominates x if for all $i=1,\ldots,I$,

$$u_i(\hat{x}_1^i,\ldots,\hat{x}_L^i) \ge u_i(x_1^i,\ldots,x_L^i)$$

and there is at least one consumer j for which

$$u_j(\hat{x}_1^j,\ldots,\hat{x}_L^j) \geq u_j(x_1^j,\ldots,x_L^j).$$

Thinking about Pareto efficiency

- ► If *x* is a Pareto efficient feasible allocation, does it mean that *x* Pareto dominates all other feasible allocations?
- ▶ If there are two allocations (*x* and *y*) is it always the case that one Pareto dominates the other?
- ► For Pareto efficiency, the initial endowments only matter in the sense that they determined the total endowment of the economy
- ► Social planner should strive to achieve Pareto efficiency at the very least!

Thinking about Pareto efficiency

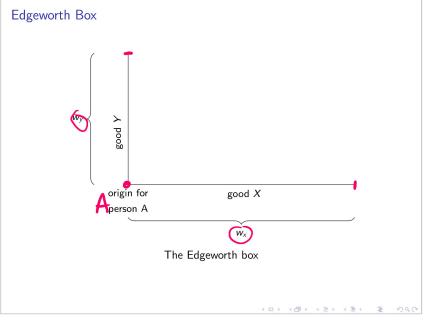
- ► If *x* is a Pareto efficient feasible allocation, does it mean that *x* Pareto dominates all other feasible allocations?
- ▶ If there are two allocations (x and y) is it always the case that one Pareto dominates the other?
- ► For Pareto efficiency, the initial endowments only matter in the sense that they determined the total endowment of the economy
- ➤ Social planner should strive to achieve Pareto efficiency at the very least! However, she may have other concerns such as fairness

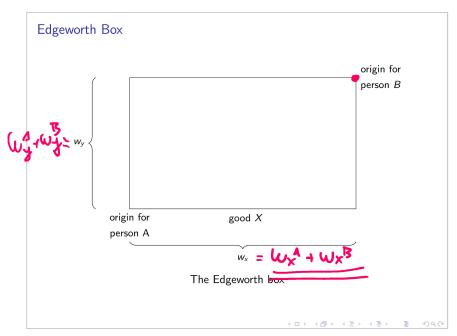
Thinking about Pareto efficiency

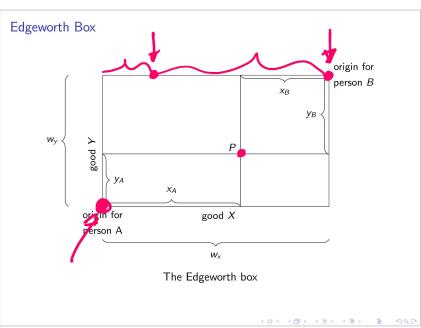
- If utility is strictly increasing, then can a Pareto efficient allocation be such that $\sum_{i=1}^{l} x_j^i$ $\sum_{i=1}^{l} w_j^i$?
- ► The set of all Pareto allocations is known as the **contract curve**

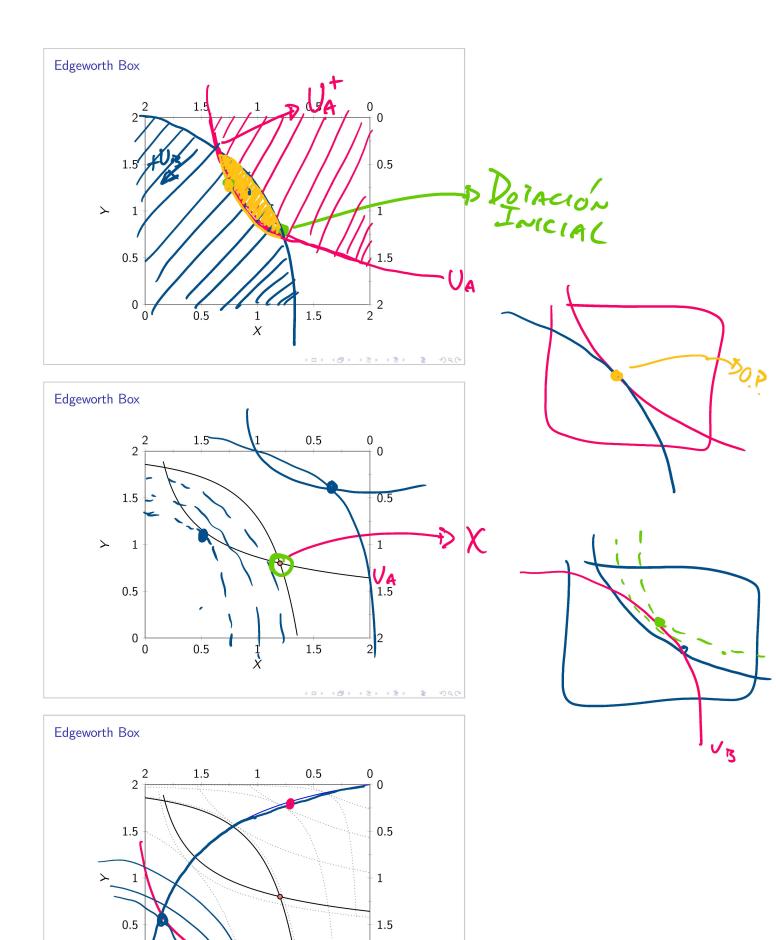
Lecture 1: General Equilibrium

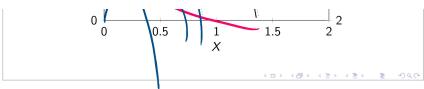
Introduction

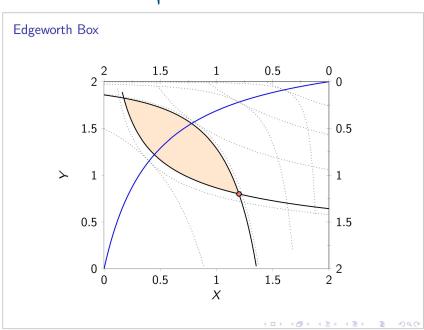

Pure Exchange Economies


Pareto efficiency


Edgeworth Box


←□ → ←□ → ← = → ← = → へ ← → ←





⁺ 2

1.5

