Lecture1

Tuesday, January 25, 2022 1:32 PM

Lecture 1: General Equilibrium

Mauricio Romero

<ロ× (間× (巻) (巻) (巻) (巻) (巻) (巻)

Lecture 1: General Equilibrium	
Introduction	
Pure Exchange Economies	
Pareto efficiency	
Edgeworth Box	

(ロ> (個) (注) (注) (注) (注) (注) (

•

.

Lecture 1: General Equ	uilibrium	
Introduction		

ヘロマス 聞マス 切り (日)

Previous classes

Previous classes

- Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- When analyzed together, each market was viewed in isolation

 Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)

- When analyzed together, each market was viewed in isolation
- But markets are often intertwined

Previous classes

- Consumers behavior (decision theory) was often analyzed separately from firm behavior (producer theory)
- When analyzed together, each market was viewed in isolation
- But markets are often intertwined
 - Transportation: Uber/metro/ecobici/car
 - Wages across sectors
 - Fruits
 - Beer and tacos

10×10×10×10×10×10×10×

a (a) (a) a

121 121

12 1

2 240

Example - Fruits

- Suppose that apple and bananas are substitutes
- Supply curve for apples shifts out
- ► DD for bananas decreases (exogenous)
- DD for apples decreases (exogenous) maybe a little

Example - Fruits

- Suppose that apple and bananas are substitutes
- Supply curve for apples shifts out
- DD for bananas decreases (exogenous)
- DD for apples decreases (exogenous) maybe a lot

A tour down memory lane

- Léon Walras started it all (1834-1910)
 - First to use mathematical tools in economics
 - Supply and demand curves as solutions to a maximization problem
 - Started the "marginal revolution"
- Walras was ultimately after normative questions (is the market economy good?)
- But first, he tackled positive questions (is there an equilibrium? is it unique?)
- Made a lot of progress. In particular came up with "Walras Law": Sum of the values of excess demands across all markets must equal zero always

<日>・<ミ>・<ミ>・<ミ>・<

〈日〉〈母〉〈心〉〈心〉 山 くろく

- What are the properties of such an equilibrium?
 - Is it unique?
 - Is it stable?
 - Is it efficient?

Pure Exchange Economies

- Assume there are
 - ▶ *I* consumers, $\mathcal{I} = \{1, ..., I\}$
 - ▶ *L* goods, $\mathcal{L} = \{1, ..., L\}$
 - Each consumer *i* is characterized by a utility function u^i .
 - $v \left(\chi_{i}^{L}, \chi_{i}^{Z}, \ldots, \chi_{i}^{L} \right)$ Each consumer can consume goods in $x_i \in \mathbb{R}_{+}^{+}$

121 121

121

-

- ▶ Each consumer has an initial endowment of $w^i \in \mathbb{R}_+^L$.
- Each consumer is characterized by the pair: (u^i, w^i) .
- Assume the utility functions represent neoclassic preferences
 - 2 (日) (四) (日) (日) (日)

Introduction	
Pure Exchange Economies	
Pareto efficiency	
Edgeworth Box	

	うどう 神 ふやくふくふくしく
Lecture 1: General Equilibrium	
Introduction	
Pure Exchange Economies	
Pareto efficiency	
Edgeworth Box	
	・ロン・(雪)・(水)・(水)・ 山 うろの

D	CC: 1
Pareto	efficiency
i uicto	cificiency

Definition (Pareto efficiency) Let \mathcal{E} be an economy. A feasible allocation of resources $x = (x^1, x^2, ..., x^l)$ is Pareto efficient if there isn't another feasible allocation $\hat{x} = (\hat{x}^1, \hat{x}^2, ..., \hat{x}^l)$ such that for every agent i, $u^i(\hat{x}^i) \ge u^i(x^i)$ and for at least one agent i^* , $u^{i^*}(\hat{x}^{i^*}) > u^{i^*}(x^{i^*})$. H

X ES O.P. SI NO EXISTE UN X Q'LO PARETO DOMINE.

Pareto efficiency

Definition (Pareto domination) Take two feasible allocations x and \hat{x} . We say that \hat{x} Pareto dominates x if for all i = 1, ..., I,

 $u_i(\hat{x}_1^i,\ldots,\hat{x}_L^i) \ge u_i(x_1^i,\ldots,x_L^i)$

and there is at least one consumer j for which

 $u_j(\hat{x}_1^j,\ldots,\hat{x}_L^j)>u_j(x_1^j,\ldots,x_L^j).$

Thinking about Pareto efficiency

- If x is a Pareto efficient feasible allocation, does it mean that x Pareto dominates all other feasible allocations?
- If there are two allocations (x and y) is it always the case that one Pareto dominates the other?
- For Pareto efficiency, the initial endowments only matter in the sense that they determined the total endowment of the economy
- Social planner should strive to achieve Pareto efficiency at the very least!

B ト イ 王 ト イ 王 ト 王 ・ つ)

Thinking about Pareto efficiency

- If x is a Pareto efficient feasible allocation, does it mean that x Pareto dominates all other feasible allocations?
- If there are two allocations (x and y) is it always the case that one Pareto dominates the other?
- For Pareto efficiency, the initial endowments only matter in the sense that they determined the total endowment of the economy
- Social planner should strive to achieve Pareto efficiency at the very least! However, she may have other concerns such as fairness

Pareto efficiency

2 BIENES
(D) (P) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B

 $\frac{1}{X}$

1.5

10

(1) (1) (1)

0.5

