Lecture2.pdf

Thursday, January 27, 2022 2:25 PM

Lecture 2: General Equilibrium	
Mauricio Romero	
101101121181 2 0	10
Lecture 2: General Equilibrium	
Cobb-Douglas Using calculus	
(D)((D)((D)((D)((D)((D)((D)((D)((D)((D)	40
Cobb-Douglas	
$u_A(x,y) = x^{\alpha}y^{1-\alpha}$	
$u_{\mathcal{B}}(x,y)=x^{\beta}y^{1-\beta}$ For graph suppose	
For graph suppose $lpha=0.7$	
$\frac{\beta = 0.3}{\omega^A = (1,1)}$	
$\omega^{m{ heta}}=(1,1)$	
101.101.121.2	<u>ac</u>
Cobb-Douglas	
2 1.5 1 0,5	AND INTERNET
1.5 0.5	$ \cdot $
	1 Un(Y,8) = X y - ~
0.5	u vicio d
art × wr	will willes has
Cobb-Douglas	$n_{12} = \frac{2}{x} \frac{1}{x}$
	nics =
Indifference curves must be tangent (formalize this later)	A Carlin - A
► Thus, the MRS must be equalized across the two consumers	hes - a (xay y - 2 - d -
$MRS^{\mathcal{A}}_{x,y} = \frac{\frac{\partial x^{\alpha} y^{1-\alpha}}{\partial x^{\alpha}}}{\frac{\partial x^{\alpha} y^{1-\alpha}}{\partial x^{\alpha}}} = \frac{\alpha}{1-\alpha} \frac{x^{\alpha-1} y^{1-\alpha}}{x^{\alpha} y^{-\alpha}} = \frac{\alpha}{1-\alpha} \frac{y^{\mathcal{A}}}{x^{\mathcal{A}}}$	(1-d) valu-a 1-a y
$MRS_{x,y}^{B} = \frac{\frac{\partial x^{\beta}y^{1-\beta}}{\partial x}}{\frac{\partial x^{\beta}y^{1-\beta}}{\partial y}} = \frac{\beta}{1-\beta} \frac{x^{\beta-1}y^{1-\beta}}{x^{\beta}y^{-\beta}} = \frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}$	
$\frac{\frac{\partial x^{2}y^{-\beta}}{\partial y} - 1 - \beta x^{\beta}y^{-\beta}}{\frac{\alpha y^{A}}{1 - \alpha x^{A}} = \frac{\beta y^{B}}{1 - \beta x^{B}}}$	
$\frac{1}{1-\alpha} \frac{1}{x^A} = \frac{1}{1-\beta} \frac{1}{x^B}$	
· □ · · Ø · · ≷ · · ≷ · ⑦	4.0

Lecture 2: General Equilibrium	X ^A , y ^A , X ^B , 8 ^B > O
Cobb-Douglas Using calculus Perfect substitutes Perfect complements	
101 ÷ 1 + 1 + 1 + 2 - 940	
Using calculus	
Essentially in this exercise we are doing the following: $\max_{(x^A,y^A),(x^B,y^B)} u_A(x^A,y^A) \text{ such that}$	
$u_{B}(x^{B}, y^{B}) \ge u_{B} = u_{B}(x^{B^{*}}, y^{B^{*}})$ $x^{B} + x^{A} \le \omega_{x},$ $y^{B} + y^{A} \le \omega_{x}.$	
$y^{\mu} + y^{\mu} \leq \omega_y.$	
Theorem Consider an Edgeworth Box economy and suppose that all consumers have strictly monotone utility functions. Then a feasible allocation $(x^{\kappa^*}, y^{\Lambda^*}, x^{B^*}, y^{B^*})$ is Pareto efficient if and only if it solves	
$\max_{(x^A, y^A), (x^B, y^B)} u_A(x^A, y^A) \text{ such that}$	
$\begin{split} u_{\mathcal{B}}(x^{\mathcal{B}},y^{\mathcal{B}}) &\geq \underline{u}_{\mathcal{B}} \\ x^{\mathcal{B}} + x^{\mathcal{A}} &\leq \omega_{x}, \\ y^{\mathcal{B}} + y^{\mathcal{A}} &\leq \omega_{y}. \end{split}$	
(B)(B)(2)(3) = 010	
 Very tempting to use lagrangeans, no? We need to assume all consumers have quasi-concave, strictly monotone, differentiable utility functions Then we can solve: <i>Q</i>=u_A(x^A, y^A) + λ(u_B(ω_x-x^A, ω_y - y^A) - <u>u_B</u>) 	$\frac{1}{2} \frac{\partial V_{a}}{\partial x_{a}} + \lambda \frac{\partial V_{B}}{\partial x_{B}} \left(-1\right) = 0$
X3 45	REGIA CADENA
Lets take the first order conditions of the above problem. Beginning with X ^A : $\frac{\partial \mathcal{L}}{\partial x^{A}}: \frac{\partial u_{A}}{\partial x}(x^{A}, y^{A}) - \lambda \frac{\partial u_{B}}{\partial x}(\omega_{x} - x^{A}, \omega_{y} - y^{A}) = 0$	$\frac{\partial y_1}{\partial y_1} = \frac{\partial U_4}{\partial y_4} + \lambda \frac{\partial U_3}{\partial y_6} (-1) = 0$
which implies:	
$\frac{\partial u_A}{\partial x}(x^{A^*}, y^{A^*}) = \lambda \frac{\partial u_B}{\partial x}(\omega_x - x^{A^*}, \omega_y - y^{A^*})$ For y ^A : $\frac{\partial t_x}{\partial x} = \frac{\partial u_B}{\partial x} + \frac{\partial u_B}{\partial x} +$	DUA = X DUB/SKB
$\begin{split} & \frac{\partial \mathcal{L}}{\partial y^A}: \frac{\partial u_A}{\partial y}(x^A, y^A) - \lambda \frac{\partial u_B}{\partial y}(\omega_x - x^A, \omega_y - y^A) = 0 \\ & \text{which implies:} \\ & \frac{\partial u_A}{\partial y}(x^{A^*}, y^{A^*}) = \lambda \frac{\partial y_B}{\partial y}(\omega_x - x^{A^*}, \omega_y - y^{A^*}) \end{split}$	JUA X ZUGYOB
(a) (Ø) (2) (2) (2) (2)	
If $(\mathbf{x}^{A^*}, \mathbf{y}^{A^*}, \mathbf{x}^{B^*}, \mathbf{y}^{B^*})$ is Pareto efficient then $\frac{\frac{\partial \omega_x}{\partial \mathbf{x}}(\mathbf{x}^{A^*}, \mathbf{y}^{A^*})}{\frac{\partial \omega_x}{\partial \mathbf{y}}(\mathbf{x}^{A^*}, \mathbf{y}^{A^*})} = \frac{\frac{\partial \omega_x}{\partial \mathbf{x}}(\omega_x - \mathbf{x}^{A^*}, \omega_y - \mathbf{y}^{A^*})}{\frac{\partial \omega_y}{\partial \mathbf{y}}(\mathbf{x}^{B^*}, \mathbf{y}^{B^*})} = \frac{\frac{\partial \omega_x}{\partial \mathbf{x}}(\mathbf{x}^{B^*}, \mathbf{y}^{B^*})}{\frac{\partial \omega_y}{\partial \mathbf{y}}(\mathbf{x}^{B^*}, \mathbf{y}^{B^*})}.$	
▶ In short $MRS^A_{s,y} = MRS^B_{s,y}$	
This condition is necessary and sufficient	
(D) (B) (2) (2) 2 ORO	

quasi-conc. (x ^{A*} , y ^{A*} , Then (x ^{A*}	at both consumers have utility functions that are ave and strictly increasing. Suppose that $\omega_{\alpha} \rightarrow A^{\alpha}, (\omega_{\beta} - y^{\alpha})$ is an interior feasible allocation. $y^{\alpha}, (\omega_{\gamma} - A^{\alpha}, (\omega_{\beta} - y^{\alpha}))$ is Pareto efficient if and only	
if	$ \begin{array}{l} \underbrace{ y^{A^*}) } { \frac{\partial \partial w}{\partial \omega} (\omega_{x} - x^{A^*}, \omega_{y} - y^{A^*}) } { \frac{\partial \partial w}{\partial y} (\omega_{x} - x^{A^*}, \omega_{y} - y^{A^*}) } = \frac{\partial w}{\partial \omega} (x^{B^*}, y^{B^*}) \\ \frac{\partial \partial w}{\partial y} (x^{B^*}, y^{B^*}) \end{array} . $	
	101101121121 2 010	Auto
Intuition Suppose th $MRS^{A}_{x,y} =$ off?	at we are at an allocation where $2 > MRS_{vv}^B = 1$. Can we make both consumers better	1/2 y s
	$-\frac{2q}{1x}$ V_{μ}	B INDIA
	1011091131131 B 030	
Intuition		
Suppose the $MRS^A_{x,y} = $ off?	at we are at an allocation where $2>\textit{MRS}^{\textit{B}}_{x,y}=1.$ Can we make both consumers better	
	s up 1 unit of y to person B in exchange for unit of x	
	different since his $MRS^B_{x,y} = 1.$	
A rece was w	ives a unit of x and only needs to give one unit of y (he illing to give two)	
	we reallocated goods to make $A \mbox{ strictly better off}$ it hurting B	
	(口)(日)(名)(名)(名) 第一内4日	
General case]
m: ((x ¹ x ¹)	$a_{X_1,\ldots,X_l^{(j)})}u_1(x_1^1,\ldots,x_L^l)$ such that $u_2(x_1^2,\ldots,x_L^2)\geq \underline{u}_2,$	
([[)	$\vdots \\ u_l(x_1^l,\ldots,x_L^l) \ge \underline{u}_l,$	
	$x_1(x_1, \dots, x_L) \ge \underline{\omega}_1,$ $x_1^1 + \dots + x_1' \le \omega_1,$	
	$x_L^1 + \dots + x_L' \le \omega_L.$	
	(D) (B) (2) (2) (2) (2)	
General case		
quasi-conc a feasible i is Pareto e exhausts a	at all utility functions are strictly increasing and we. Suppose also that $(\{k_1^1, \dots, k_l^1\}, \dots, \{k_l^1, \dots, k_l^l\})$ is incriva allocation. Then $(\{k_1^1, \dots, k_l^1\}, \dots, \{k_l^1, \dots, k_l^l))$ ficient if and only if $(\{k_1^1, \dots, k_l^1\}, \dots, \{k_l^1, \dots, k_l^l))$ if resources and for all pairs of goods ℓ, ℓ' , $RRS_{l,\ell'}^1(\hat{k}_1^1, \dots, \hat{k}_l^1) = \dots = MRS_{l,\ell'}^l(\hat{k}_1^1, \dots, \hat{k}_l^l)$.	
	101101131131 2 050	
	functions must be strictly increasing, quasi-concave,	
	fferentiable!	
	rerentiable!	

(の) (さ) (き) ま つ(の)

y y y y y y y y y y y y y y y y y y y
• What about: $u_A(x, y) = x^2 + y^2$, $u_B(x, y) = x + y$? • Try it at home!

- Recap
 - We expect all exchanges to happen on the contract curve (hence its name)
 - ▶ We expect all **voluntary** exchanges to be in the orange box
 - Can we say more? Not without prices

(D) (B) (2) (2) (2) 2 040