Lecture2.pdf
Thursday, January 27, 2022 2:25 PM

Lecture 2: General Equilibrium

Cobb-Douglas

Cobb-Douglas

$$
\begin{aligned}
& n \text { ReS } S^{s}=\frac{-\alpha\left(x^{\alpha}\right)^{\prime} y^{\prime-\alpha}}{(1-\alpha) x^{\prime}\left(y^{-\alpha}\right)}=\frac{-\alpha}{1-\alpha} \frac{y_{A}}{x_{A}}
\end{aligned}
$$

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers $M R S_{x, y}^{A}=\frac{\frac{\partial x^{\alpha} y^{1}-a}{\partial x}}{\frac{\partial x^{\alpha} y^{1}-\alpha}{\partial y}}=\frac{\alpha}{1-\alpha} \frac{x^{\alpha-1} y^{1-\alpha}}{x^{\alpha} y^{-\alpha}}=\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}$
MRS $\frac{\frac{a x}{\frac{a}{1} \frac{y}{n}^{A}}=\frac{\beta}{1-\alpha y^{\beta}}}{1-\beta x^{\beta}}$

But we haven't used the fact that

$$
\begin{aligned}
& x^{A}+x^{B}=\omega_{x}=2 \\
& y^{A}+y^{B}=\omega_{y}=2
\end{aligned}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{aligned}
& \begin{array}{l}
x^{+}++^{B}=\omega_{x} \\
x^{n}+\gamma^{B}=\omega_{t}
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Cobb-Douglas } \\ & \text { But we haven't used the fact that } \\ & x^{A}+x^{B}=\omega_{x} \\ & y^{A}+y^{B}=\omega_{y}\end{aligned}$

$$
\begin{array}{r}\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\ y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right)\end{array}
$$

$$
\begin{aligned}
& \text { Cobb-Douglas } \\
& \text { But we haven't used the fact that } \\
& \qquad x^{A}+x^{B}=\omega_{x} \\
& \qquad y^{A}+y^{B}=\omega_{y} \\
& \frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
& \qquad y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right) \\
& y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}}
\end{aligned}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right) \\
y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}} \\
\text { Then: } \quad y^{A}=\frac{(1-\alpha) \beta \omega_{y} x^{A}}{\alpha w_{x}-\alpha x^{A}-\alpha \beta w_{x}+\beta x^{A}}
\end{gathered}
$$

Cobb-Douglas

Lecture 2: General Equilibrium

$$
\begin{aligned}
& \max U^{n}\left(x^{n}, y^{4}\right) \\
& x, y^{2}, x_{3}^{3}, y^{3} \\
& \text { StE } \\
& u^{B}\left(x^{B}, y^{3}\right) \geq \bar{u} \rightarrow 0 . P \text {. } \\
& \left.x^{4}+x^{13} \leq w_{x}\right\} \text { Facile } \\
& y^{4}+y^{3} \leq w_{y} \\
& x^{A}, y^{A}, x^{B}, y^{B}>0
\end{aligned}
$$

Using calculus
Perfect complements

Using calculus

Essentially in this exercise we are doing the following

$$
\begin{aligned}
& \max _{\left(x^{A}, y^{A}\right),\left(x^{B}, y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right) \text { such that } \\
& u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B}=u_{B}\left(x^{B^{*}}, y^{B^{*}}\right) \\
& x^{B}+x^{A} \leq \omega_{x} . \\
& y^{B}+y^{A} \leq \omega_{y} .
\end{aligned}
$$

Theorem
Consider an Edgeworth Box economy and suppose that all consumers have strictly monotone utility functions. Then a feasible allocation ($x^{A^{*}}, y^{A^{*}}, x^{B^{*}}, y^{B^{*}}$) is Pareto efficient if and only if it solves
$\max _{\left(x^{A}, y^{A}\right),\left(x^{B} y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right)$ such that

$$
\begin{aligned}
& u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B} \\
& x^{B}+x^{A} \leq \omega_{x}
\end{aligned}
$$

$$
\begin{aligned}
& x^{D}+x^{A} \leq \omega_{x} \\
& y^{B}+y^{A} \leq \omega_{y}
\end{aligned}
$$

- Very tempting to use lagrangeans, no?
- We need to assume all consumers have quasi-concave, strictly monotone, differentiable utility functions Then we can solve:

$$
\text { Then we can solve: } \underbrace{}_{u_{A}\left(x^{A}, y^{A}\right)+\lambda(u_{B}(\underbrace{\frac{1}{x^{3}}-x^{A}}_{x^{\prime}}, \underbrace{\omega_{y}-y^{A}}_{y_{y}^{B}})-\underline{u}_{B})}
$$

$$
\begin{aligned}
& \frac{\partial y}{\partial y_{y}}= \frac{\partial U_{A}}{\partial y_{A}}+\lambda \frac{\frac{\partial U_{B}}{\partial y_{B}}(-1)}{}=0 \\
& \frac{\frac{\partial U_{A}}{\partial x_{A}}}{\frac{\partial U_{A}}{\partial y_{A}}}=\frac{\lambda}{x} \frac{\partial U_{B} / \partial x_{B}}{\partial U_{B} / \partial y_{B}}
\end{aligned}
$$

If $\left(x^{A^{*}}, y^{A^{*}}, x^{B^{*}}, y^{B^{*}}\right)$ is Pareto efficient then
$\frac{\frac{\partial u_{A}}{\partial x}\left(x^{A^{*}}, y^{A^{*}}\right)}{\frac{\partial u^{*}}{\partial y}\left(x^{A^{*}}, y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)}=\frac{\frac{\partial u_{B}}{\partial x}\left(x^{B^{*}}, y^{B^{*}}\right)}{\frac{\partial u_{B}}{\partial y}\left(x^{B^{*}}, y^{B^{*}}\right)}$.

- In short $M R S_{x, y}^{A}=M R S_{x, y}^{B}$
- This condition is necessary and sufficient

Intuition
Suppose that we are at an allocation where
$M R S_{x,}^{A}=2>M R S^{B}{ }_{y}=1$. Can we make both consumers better
off?

- A gives up 1 unit of y to person B in exchange for unit of x
- B is indifferent since his $M R S_{x, y}^{B}=1$.
- A receives a unit of x and only needs to give one unit of y (he was willing to give two)
- We have reallocated goods to make A strictly better off without hurting B

General case
Theorem Suppose that all utility functions are strictly increasing and quasi-concave. Suppose also that $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is a feasible interior allocation. Then $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is Pareto efficient if and only if $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ exhausts all resources and for all pairs of goods ℓ, ℓ^{\prime}, $M R S_{\ell, \ell^{\prime}}^{1}\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right)=\cdots=M R S_{\ell, \ell^{\prime}}^{\prime}\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right) .$

Lecture 2: General Equilibrium

Cobb-Douglas
Perfect substitutes
Pericct complements

Perfect substitutes
Suppose that

$$
\begin{aligned}
& \substack{u_{4}\left(x^{A}, y^{A}\right)=2 x^{A}+y^{A} \\
u_{B}\left(x^{B}, y^{B}\right)=x^{B}+y^{B} \\
\omega^{B}=(1) \\
w^{B}=(1,1)}
\end{aligned} \longrightarrow \begin{aligned}
& \bar{U}_{A}=2 x^{A}+y^{A} \\
& y^{A}=\bar{U}-2 x^{A} \\
& \bar{U}_{B}=x^{B}+y^{B}
\end{aligned}
$$

$$
\begin{aligned}
& B_{B=}=x^{2}+y^{3} \\
& y^{2}=\bar{v}-x_{B}
\end{aligned}
$$

$$
\Rightarrow w_{y-y^{4}}^{w^{4}}=\bar{v}-(\underbrace{\left(\ln _{x}-x_{A}\right)}_{x_{B}}
$$

$$
\begin{aligned}
& \operatorname{MAX} U^{A} \text { SEE } U^{B} \geqslant \overline{U_{B}} \\
& F \text { AcTBl } \\
& \text { EQUIV } \\
& \text { MAX } U^{B} S E \quad U^{A} \geqslant \overline{U_{A}} \\
& \text { FACTIBl }
\end{aligned}
$$

Perfect substitutes

Perfect substitutes

Perfect substitutes

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

- We expect all exchanges to happen on the contract curve (hence its name)
- We expect all voluntary exchanges to be in the orange box
- Can we say more? Not without prices

