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Using calculus

Essentially in this exercise we are doing the following:
A A

max ua(x”, such that
(xA,y4),(xB yB) ACy)
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ug(x®,y®) 2 ug = up(x

Theorem

Consider an Edgeworth Box economy and suppose that all
consumers have strictly monotone utility functions. Then a feasible
allocation (x", yA* xB* yB") is Pareto efficient if and only if it
solves

» E;?xs B)uA(xA,yA) such that

x4,y A),(xB.y
us(x®.y®) > ug
xB 4 xA < wy,

yP+yA <w,.

> Very tempting to use lagrangeans, no?

> We need to assume all consumers have quasi-concave, strictly
monotone, differentiable utility functions
Then we can solve:
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Lets take the first order conditions of the above problem.
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If (xA", yA", xB", yB") is Pareto efficient then
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» In short MRS;‘_Y = MRSf_y

» This condition is necessary and sufficient
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Theorem
Suppose that both consumers have utility functions that are
quasi-concave and strictly increasing. Suppose that
(A", y A wy — XA*,wy — yA") is an interior feasible allocation.
Then (XA, y*", wy — xA*‘wy — yA") is Pareto efficient if and only
if
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Intuition

Suppose that we are at an allocation where
MRS, =2 > MRSE, = 1. Can we make both consumefs bett

A, ®
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Suppose that we are at an allocation where

MRSQy =2> MRSEy = 1. Can we make both consumers better
off?

> A gives up 1 unit of y to person B in exchange for unit of x

» B is indifferent since his MRSfy =

> A receives a unit of x and only needs to give one unit of y (he
was willing to give two)

» We have reallocated goods to make A strictly better off
without hurting B



General case

(X, ..., x!) such that u(xZ, ..., x?) > up,
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General case

Theorem

Suppose that all utility functions are strictly increasing and
quasi-concave. Suppose also that ((%1, ). (K. %) is
a feasible interior allocation. Then (({,...,%}),....(&.....&]))
is Pareto efficient if and only if (%%, ..., %),...,(%,....&]))
exhausts all resources and for all pairs of goods ¢, (',

MRS} (%2, &) =+~ = MRS} (%, . %).

» Utility functions must be strictly increasing, quasi-concave,
and differentiable!
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Perfect complements

Suppose that

A A
ua(x*, y*) = min(x*, 2y*) —i? X z Z

ug(xB,yB) = min(2xB, yB
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Make A as well as we can without making B worse off
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> What about: ua(x,y) = x>+ y2,ug(x,y) =x+y?

W

» Try it at home!

ol



Recap

P> We expect all exchanges to happen on the contract curve

(hence its name)

» We expect all voluntary exchanges to be in the orange box

» Can we say more? Not without prices



