Lecture2.pdf
Thursday, January 27, 2022 2:26 PM

Lecture2.pdf

Lecture 2: General Equilibrium

Cobb-Douglas
Using calculus
Perfect substitu
Perfect complements

Cobb-Douglas

- Indifference curves must be tangent (formalize this later)
- Thus, the MRS must be equalized across the two consumers

$$
\begin{gathered}
\operatorname{MRS}_{x, y}^{A}=\frac{\frac{\partial x^{\alpha} y^{1-\alpha}}{\partial x}}{\frac{\partial x^{\alpha} y^{1-\alpha}}{\partial y}}=\frac{\alpha}{1-\alpha} \frac{x^{\alpha-1} y^{1-\alpha}}{x^{\alpha} y^{-\alpha}}=\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}} \\
M R S_{x, y}^{B}=\frac{\frac{\partial x^{\beta} y^{1-\beta}}{\partial x}}{\frac{\partial x^{\beta} y^{1-\beta}}{\partial y}}=\frac{\beta}{1-\beta} \frac{x^{\beta-1} y^{1-\beta}}{x^{\beta} y^{-\beta}}=\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}} \\
\quad \frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{y^{B}}{x^{B}}
\end{gathered}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{aligned}
& x^{A}+x^{B}=\omega_{x} \\
& y^{A}+y^{B}=\omega_{y}
\end{aligned}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}
\end{gathered}
$$

Cobb-Douglas
But we haven't used the fact that

$$
\begin{gathered}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { TM } A=T M S_{B} \\
& \frac{\partial U_{A} / \partial x_{A}}{\partial U_{A} / \partial y_{A}}=\frac{\frac{\text { uriles }}{x}}{\frac{\text { Unless }}{y}}=\frac{y}{x} \text { UMDADES }
\end{aligned}
$$

$$
\frac{\alpha x^{\alpha-1} y^{1-\alpha}}{(1-\alpha) x^{\alpha} y^{-\alpha}}=\frac{\alpha}{1-\alpha} \frac{y_{A}}{x_{A}}=T M S^{4}
$$

$$
\frac{\beta}{1-\beta} \frac{y_{B}}{X_{B}}=T M S^{B}
$$

$$
\begin{aligned}
& \left.\frac{\alpha}{1-\alpha} \frac{y_{A}}{x_{A}}=\frac{\beta}{1-\beta} \frac{y_{B}}{x_{B}}\right)^{0} \\
& \frac{\alpha}{1-\alpha} \frac{y_{A}}{x_{A}}=\frac{\beta}{1-\beta} \frac{w_{y}-y_{A}}{w_{x}-x_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{A}=\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} x_{A} \frac{w_{y}-y_{A}}{\omega_{x}-x_{A}} \\
& y_{A}=\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A} w_{y}}{w_{x}-x_{A}}-\frac{1-\alpha}{\alpha} \frac{\beta}{1+3} \frac{x_{A} y_{A}}{w_{x}-x_{A}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{A}+\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A} y_{A}}{\omega_{x}-x_{A}}=\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A} w_{y}}{\omega_{x}-x_{A}} \\
& y_{A}\left(1+\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A}}{\omega_{X}-x_{A}}\right)=\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{X_{A} \omega_{y}}{\omega_{x}-x_{A}} \\
& y_{A}=\frac{\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A} w_{y}}{\omega x-x_{A}}}{1+\frac{1-\alpha}{\alpha} \frac{\beta}{1-\beta} \frac{x_{A}}{\omega x-x_{A}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cobb-Douglas } \\
& \text { But we haven't used the fact that } \\
& \qquad x^{A}+x^{B}=\omega_{x} \\
& \qquad y^{A}+y^{B}=\omega_{y} \\
& \qquad \frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
& \qquad y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right) \\
& y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}}
\end{aligned}
$$

Cobb-Douglas

$$
\begin{aligned}
& \text { But we haven't used the fact that } \\
& \qquad \begin{array}{c}
x^{A}+x^{B}=\omega_{x} \\
y^{A}+y^{B}=\omega_{y} \\
\frac{\alpha}{1-\alpha} \frac{y^{A}}{x^{A}}=\frac{\beta}{1-\beta} \frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}} \\
\qquad y^{A}=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta}\left(\frac{\omega_{y}-y^{A}}{\omega_{x}-x^{A}}\right) \\
y^{A}\left(1+\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{x^{A}}{\omega_{x}-x^{A}}\right)=x^{A} \cdot \frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{\omega_{y}}{\omega_{x}-x^{A}} \\
\text { Then: } \quad y^{A}=\frac{(1-\alpha) \beta \omega_{y} x^{A}}{\alpha w_{x}-\alpha x^{A}-\alpha \beta w_{x}+\beta x^{A}}
\end{array}
\end{aligned}
$$

Cobb-Douglas

Lecture 2: General Equilibrium

Essentially in this exercise we are doing the following:

$$
\begin{aligned}
& \max _{\left(x^{A}, y^{A}\right),\left(x^{B}, y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right) \text { such that } \\
& \\
& u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B}=u_{B}\left(x^{B^{*}}, y^{\left.B^{*}\right)}\right. \\
& x^{B}+x^{A} \leq \omega_{x}, \\
& y^{B}+y^{A} \leq \omega_{y} .
\end{aligned}
$$

Theorem
Consider an Edgeworth Box economy and suppose that all consumers have strictly monotone utility functions. Then a feasible allocation $\left(x^{A^{*}}, y^{A^{*}}, x^{B^{*}}, y^{B^{*}}\right)$ is Pareto efficient if and only if it solves

$$
\begin{aligned}
& \max _{\left(x^{A}, y^{A}\right),\left(x^{B}, y^{B}\right)} u_{A}\left(x^{A}, y^{A}\right) \text { such that } \\
& \qquad \begin{array}{l}
u_{B}\left(x^{B}, y^{B}\right) \geq \underline{u}_{B} \\
x^{B}+x^{A} \leq \omega_{x} \\
\\
y^{B}+y^{A} \leq \omega_{y}
\end{array}
\end{aligned}
$$

- Very tempting to use lagrangeans, no?
- We need to assume all consumers have quasi-concave, strictly monotone, differentiable utility functions Then we can solve: \qquad

$$
\begin{aligned}
& \frac{\partial y}{\partial x_{A}}=\frac{\partial V_{A}}{\partial x_{A}}+\lambda \frac{\partial U_{B}}{\partial x_{B}}(-1)=0 \\
& \frac{\partial y}{\partial y_{A}}=\frac{\partial V_{A}}{\partial y_{A}}+\lambda \frac{\partial U_{B}}{\partial y_{B}}(-1)=0
\end{aligned}
$$

Lets take the first order conditions of the above problem. Beginning with X^{A}.

$$
\frac{\partial \mathcal{L}}{\partial x^{A}}: \frac{\partial u_{A}}{\partial x}\left(x^{A}, y^{A}\right)-\lambda \frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A}, \omega_{y}-y^{A}\right)=0
$$

which implies:

$$
\frac{\partial u_{A}}{\partial x}\left(x^{A^{*}}, y^{A^{*}}\right)=\lambda \frac{\partial u_{B}}{\partial x}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)
$$

For y^{A} :

$$
\frac{\partial \mathcal{L}}{\partial y^{A}}: \frac{\partial u_{A}}{\partial y}\left(x^{A}, y^{A}\right)-\lambda \frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A}, \omega_{y}-y^{A}\right)=0
$$

which implies:

$$
\frac{\partial u_{A}}{\partial y}\left(x^{A^{*}}, y^{A^{*}}\right)=\lambda \frac{\partial u_{B}}{\partial y}\left(\omega_{x}-x^{A^{*}}, \omega_{y}-y^{A^{*}}\right)
$$

$$
\frac{\partial U_{A} \partial x_{A}}{\partial U_{A} \partial y_{A}}=\frac{x}{\lambda} \frac{\partial U_{B} / \partial x_{B}}{\partial U_{B} / \partial y_{B}}
$$

$$
\text { THE }{ }^{A}=T M S^{B}
$$


```
Intuition
    Suppose that we are at an allocation where
    MRSSA,y = 2 > MRS 位 = 1. Can we make both consumers better
    off?
    - A gives up 1 unit of }y\mathrm{ to person B in exchange for unit of x
    - B is indifferent since his MRS }\mp@subsup{S}{x,y}{B}=
    - A receives a unit of }x\mathrm{ and only needs to give one unit of y (he
        was willing to give two)
    - We have reallocated goods to make A strictly better off
        without hurting B
```

General case
$\left.\left(\left(x_{1}^{1}, \ldots, x_{i}\right), \ldots, \ldots x_{1}^{\prime}, \ldots x_{1}^{\prime}\right)\right) \quad \max _{1}\left(x_{1}^{1}, \ldots, x_{L}^{\prime}\right)$ such that $u_{2}\left(x_{1}^{2}, \ldots, x_{L}^{2}\right) \geq \underline{u}_{2}$,

$$
\begin{aligned}
& u_{1}\left(x_{1}^{\prime}, \ldots, x_{1}^{\prime}\right) \geq u_{l}, \\
& x_{1}^{1}+\cdots+x_{1}^{\prime} \leq \omega_{1}, \\
& \vdots \\
& x_{L}^{1}+\cdots+x_{L}^{\prime} \leq \omega_{L} .
\end{aligned}
$$

General case

Theorem
Suppose that all utility functions are strictly increasing and quasi-concave. Suppose also that $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is a feasible interior allocation. Then $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}, \ldots, \hat{x}_{L}\right)\right)$
is Pareto efficient if and only if $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{\prime}\right)\right)$ is Pareto efficient if and only if $\left(\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right), \ldots,\left(\hat{x}_{1}^{1}, \ldots\right.\right.$ $M R S_{\ell, \ell^{\prime}}^{1}\left(\hat{x}_{1}^{1}, \ldots, \hat{x}_{L}^{1}\right)=\cdots=\operatorname{MRS}_{\ell, \ell^{\prime}}^{\prime}\left(\hat{x}_{1}^{\prime}, \ldots, \hat{x}_{L}^{\prime}\right)$.

Lecture 2: General Equilibrium

Cobb-Douglas

Perfect substitutes

Perfect substitutes

Suppose that

Perfect substitutes

Perfect substitutes

Perfect substitutes

Perfect substitutes

Lecture 2: General Equilibrium

Cobb-Douglas
Using calculus
Perfect complements

Perfect complements

$$
\begin{aligned}
& \text { Suppose that } \\
& \qquad \begin{array}{c}
u_{A}\left(x^{A}, y^{A}\right)= \\
u_{B}\left(x^{B}, y^{B}\right)= \\
\min \left(x^{A}, 2 y^{A}\right) \\
\min \left(2 x^{B}, y^{B}\right) \\
\omega^{A}=(3,1) \\
\omega^{B}=(1,3)
\end{array}
\end{aligned} \longrightarrow 2 x^{A}=2 y^{A}
$$

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

Make A as well as we can without making B worse off

- We expect all exchanges to happen on the contract curve (hence its name)
- We expect all voluntary exchanges to be in the orange box
- Can we say more? Not without prices

