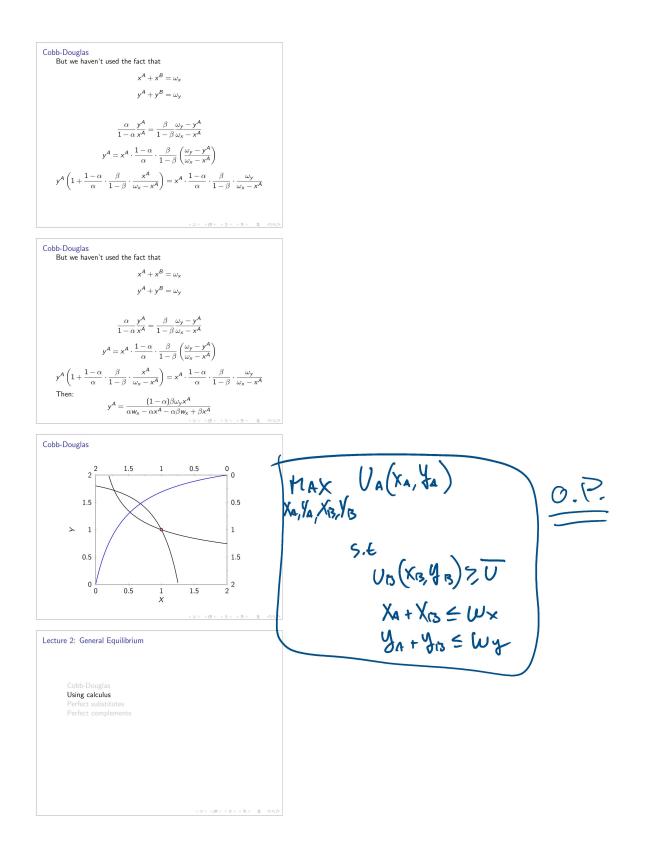
Lecture2.pdf

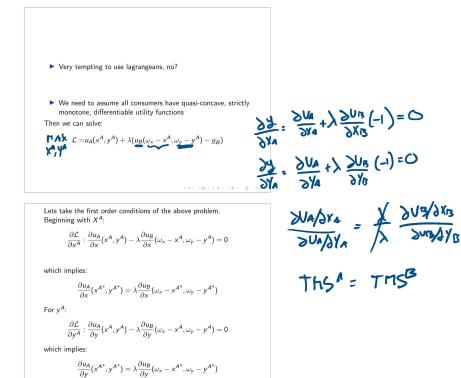

Thursday, January 27, 2022 2:26 PM

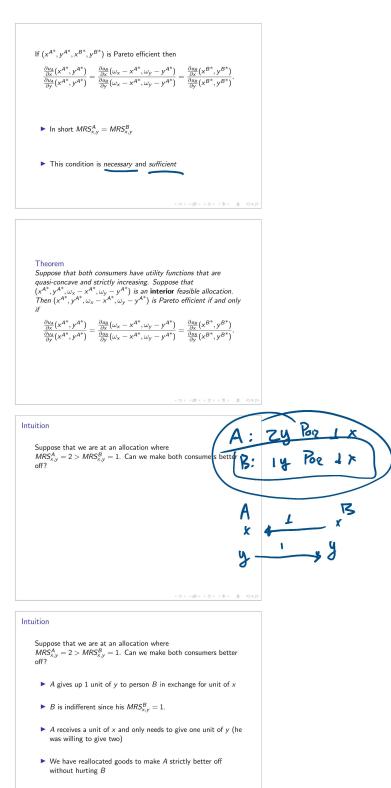
Lecture2.pdf

Lecture 2: General Equilibrium	
Mauricio Romero	
(D) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	<u>.</u>
Lecture 2: General Equilibrium	
Cobb-Douglas Using calculus Perfect substitutes	
Perfect complements	
(D)(B)(E)(E) (E)(E)(C)	<u>~</u>
Cobb-Douglas	
() 0.1-0	
$egin{aligned} &u_{\mathcal{A}}(x,y)=x^{lpha}y^{1-lpha}\ &u_{\mathcal{B}}(x,y)=x^{eta}y^{1-eta} \end{aligned}$	
For graph suppose	
For graph suppose $\label{eq:alpha} \alpha = 0.7$ $\label{eq:alpha} \beta = 0.3$	
For graph suppose $lpha=$ 0.7	
For graph suppose $lpha=0.7$ $eta=0.3$ $\omega^A=(1,1)$	
For graph suppose $\label{eq:alpha} \begin{array}{l} \alpha = 0.7 \\ \beta = 0.3 \\ \omega^A = (1,1) \\ \omega^B = (1,1) \end{array}$	
For graph suppose $\label{eq:alpha} \begin{array}{l} \alpha = 0.7 \\ \beta = 0.3 \\ \omega^A = (1,1) \\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	
For graph suppose $\label{eq:alpha} \begin{array}{l} \alpha = 0.7 \\ \beta = 0.3 \\ \omega^A = (1,1) \\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	
For graph suppose $\label{eq:alpha} \begin{array}{l} \alpha = 0.7 \\ \beta = 0.3 \\ \omega^A = (1,1) \\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	Pio JNICIAL
For graph suppose $\label{eq:alpha} \begin{array}{l} \alpha = 0.7 \\ \beta = 0.3 \\ \omega^A = (1,1) \\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	
For graph suppose $\begin{array}{c} \alpha = 0.7\\ \beta = 0.3\\ \omega^A = (1,1)\\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	
For graph suppose $\begin{array}{c} \alpha = 0.7\\ \beta = 0.3\\ \omega^A = (1,1)\\ \omega^B = (1,1) \end{array}$ Cobb-Douglas	
For graph suppose $a = 0.7$ $\beta = 0.3$ $a^A = (1, 1)$ $a^B = (1, 1)$ Cobb-Douglas Cobb-Douglas $a = 0.7$ $a = 0.7$ $a^{A} = (1, 1)$ $a^{A} = (1, 1)$	
For graph suppose $a = 0.7$ $\beta = 0.3$ $\omega^A = (1, 1)$ $\omega^B = (1, 1)$ Cobb-Douglas Cobb-Douglas $a = 0.7$	

ς.

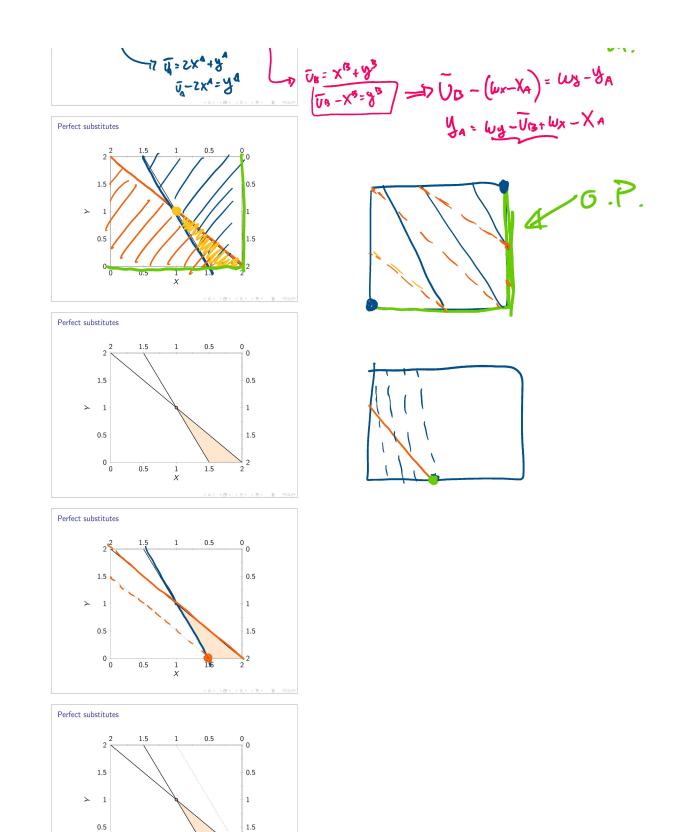
Using calculus


Essentially in this exercise we are doing the following:


 $\max_{(x^A,y^A),(x^B,y^B)} u_A(x^A,y^A)$ such that

) such that $u_{\mathcal{B}}(x^{\mathcal{B}}, y^{\mathcal{B}}) \geq \underline{u}_{\mathcal{B}} = u_{\mathcal{B}}(x^{\mathcal{B}^{*}}, y^{\mathcal{B}^{*}})$ $\begin{cases} V_{\mathcal{B}}\left(u_{\mathcal{X}} - \mathcal{X}_{\mathcal{A}_{\mathcal{F}}} u_{\mathcal{Y}} - \mathcal{Y}_{\mathcal{A}_{\mathcal{F}}} \right) \geq U \\ y^{\mathcal{B}} + y^{\mathcal{A}} \leq \omega_{y}. \end{cases}$

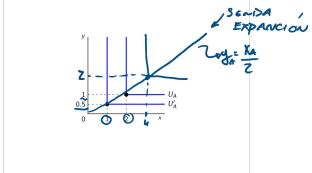
Theorem Consider an Edgeworth Box economy and suppose that all consumers have strictly monotone utility functions. Then a feasible allocation $(x^{A^*},y^{A^*},x^{B^*},y^{B^*})$ is Pareto efficient if and only if it solves

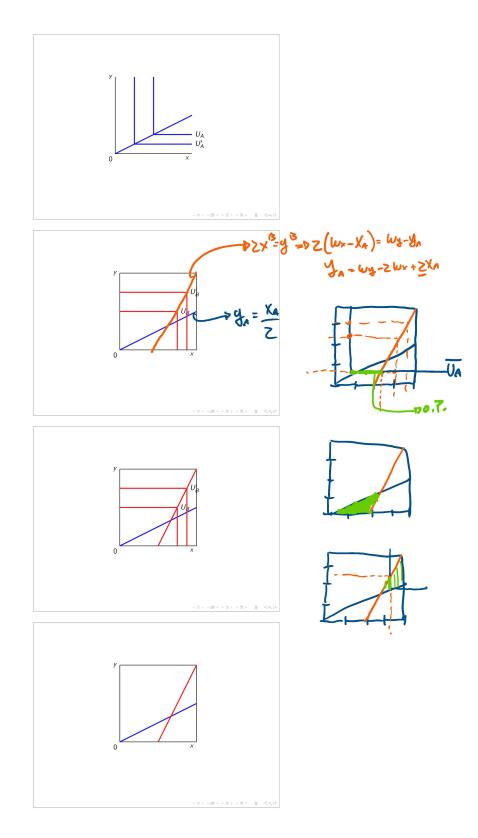

 $\max_{(x^A,y^A),(x^B,y^B)} u_A(x^A,y^A)$ such that $u_B(x^B, y^B) \ge \underline{u}_B$ $x^B + x^A \le \omega_x,$ $y^B + y^A \leq \omega_y$.

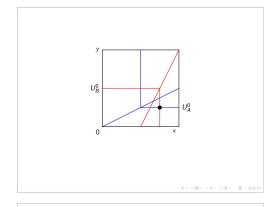
10110+101121121 2 OQ

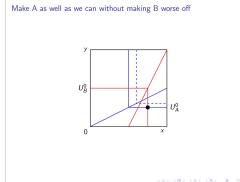
General case			
$\max_{\substack{((x_1^1,,x_l^1),(x_1^l,,x_l^l) \\ \vdots}} u_1(x_1^1,,x_L^l) \text{ such that } u_2(x_1^2,,x_L^2) \ge \underline{u}_2,$			
$u_l(\mathbf{x}_1^l,\ldots,\mathbf{x}_l^l) \ge \underline{u}_l, \\ \mathbf{x}_1^1 + \cdots + \mathbf{x}_l^l \le \omega_1,$			
$\vdots \\ x_L^1 + \dots + x_L' \le \omega_L.$			
1011 (B) (2) (3) 2 OLO			
General case			
Theorem Suppose that all utility functions are strictly increasing and quasi-concave. Suppose also that $((\hat{x}_1^1, \dots, \hat{x}_1^1), \dots, (\hat{x}_1^l, \dots, \hat{x}_l^l))$ is a feasible interior allocation. Then $((\hat{x}_1^1, \dots, \hat{x}_l^1), \dots, (\hat{x}_l^1, \dots, \hat{x}_l^l))$ is Pareto efficient if and only if $((\hat{x}_1^1, \dots, \hat{x}_l), \dots, (\hat{x}_l^1, \dots, \hat{x}_l^l))$ exhausts all resources and for all pairs of goods ℓ, ℓ' ,			
$MRS^1_{\ell,\ell'}(\hat{\mathbf{x}}^1_1,\ldots,\hat{\mathbf{x}}^1_L)=\cdots=MRS^I_{\ell,\ell'}(\hat{\mathbf{x}}^I_1,\ldots,\hat{\mathbf{x}}^I_L).$			
Utility functions must be strictly increasing, quasi-concave,			
and differentiable!			
JD0 ≥ 15115/18, 101			
Lecture 2: General Equilibrium			
Cobb-Douglas Using calculus			
Perfect substitutes Perfect complements			
0,0 5 (5)(5)(0)	_	-	
Perfect substitutes		Va	
Suppose that			
$u_{A}(x^{A}, y^{A}) = 2x^{A} + y^{A}$			
$\omega^{A} = (1, 1)$ $\omega^{B} = (1, 1)$			
		0.P.	
$\vec{u} = 2x^{4} + y^{4}$ $\vec{u}_{a} - 2x^{4} = y^{4}$	$\overline{U}_{B} = \chi^{B} + y^{B}$ $I = \frac{1}{16} - \frac{1}{16} = 0$	-Xa) = WS-YA	
va 0	1A.a.» / =//// - (WX		

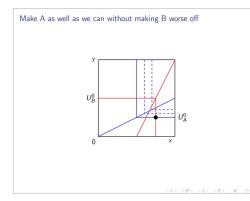
0 + 0

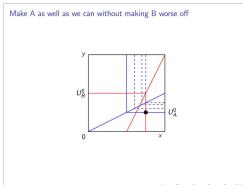

0.5

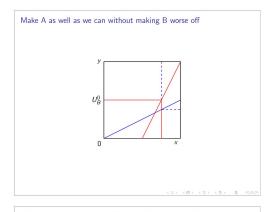

 $1 \\ X$


22

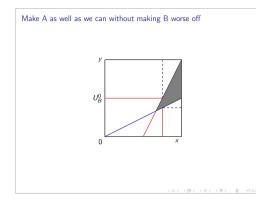

1.5

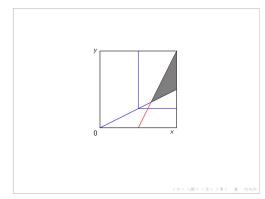


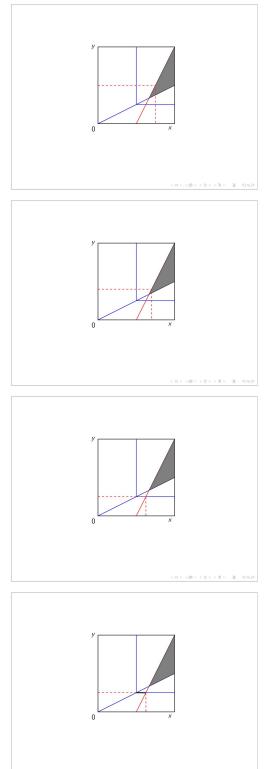


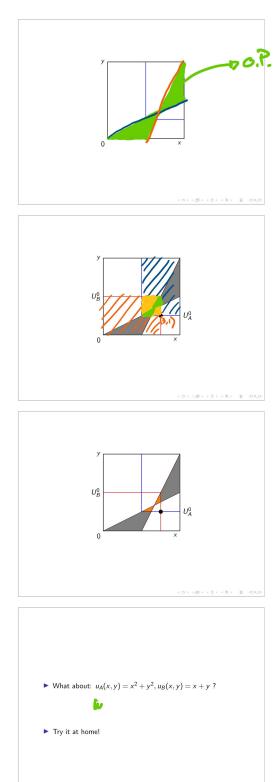












(日)(日)(王)(王)(王)(王)の(

(ロ) (皮) (注) (注) 注 の(の)

Recap
We expect all exchanges to happen on the contract curve (hence its name)
We expect all voluntary exchanges to be in the orange box
Can we say more? Not without prices

(0) (0) (2) (2) 2 00