
Lecture3.pdf Tuesday, February 1, 2022 2:32 PM

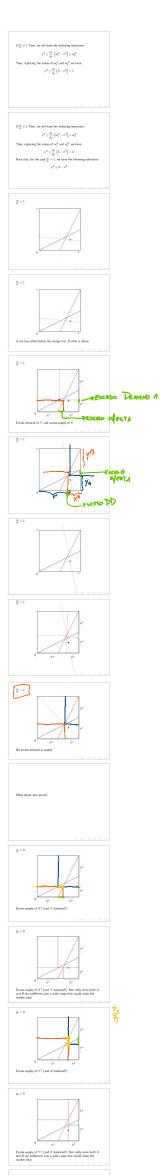
> Lecture 3: General Equilibrium Maaricio Romero

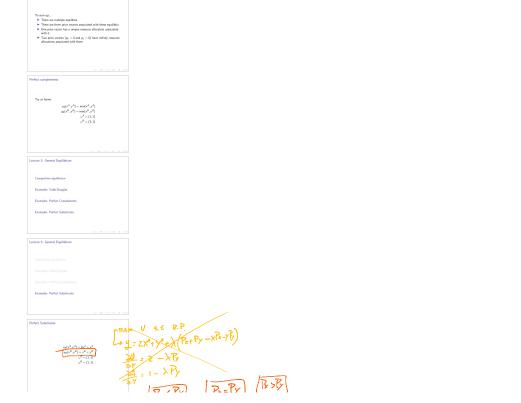
Lecture3.p...

Competitive equilibrium Examples: Cobb-Douglas Examples: Perfect Complements Examples: Perfect Substitutes cture 3: General Equilibrium Competitive equilibrium There is an advect for each good
 There is an advect for each good
 There is an advect for each good at a access the narket advect at a good at a access the narket advect at a good at a access the second seco e equilibrium - Definition Comparison equilibrium - Definition $\begin{array}{l} \begin{array}{l} \label{eq:comparison} \\ \mbox{Product} \\ \m$ Max U:(Ki) X^e s.e Ap.xic Cp-w^e orium - Properties Domain Lapons in the set of the environment of an Heidely measurement $A_{\rm H}$ and $(m_{\rm e}, T_{\rm eff}, r_{\rm eff}, r_{\rm eff})$ is a comparison equivalence $A_{\rm H}$, $A_{\rm H}$, $A_{\rm H}$, $A_{\rm H}$, and $A_{\rm H}$, and A_{\rm H} , and A_{\rm H} , and A_{\rm H} Competitive equilibrium - Walras' Law Theorem (Walras' Law) Suppose the consumer i has weakly monotone preferences and that $S' \in s^{i^*}(p)$. Then $p \cdot \hat{x}^{i} = \sum_{\ell=1}^{L} p_{\ell} \hat{x}_{\ell}^{i} = \sum_{\ell=1}^{L} p_{\ell} \omega_{\ell}^{i} = p \cdot \omega^{\ell}.$ Theorem (Walras' Law – II) Suppose that attify functions are usually necessaria: Suppose latt $p=(q_1,\ldots,q_k)$ is such that $p_k < 0$. Take any $\{r^k,p\}$ is which Gradinos I holds for each consumer $i=1,2,\ldots,l$ and markets that for all consensitive $i=1,2,\ldots,k-1$. Then the market clearing condition will hold for convencely l as well.
$$\label{eq:Walras' Law - proof} \begin{split} \hline & Walras' Law - proof \\ \blacktriangleright \ \ \mbox{For each consumer } i, we must \\ & \sum_{\ell=1}^{L} p_\ell a_\ell^{2\ell} = \sum_{\ell=1}^{L} p_\ell a_\ell^{2\ell}. \end{split}$$
$$\begin{split} & \text{Worker Line - proof} \\ & \text{For each commuter } i, \text{ we must} \\ & \sum_{i=1}^{n} a_{i}a_{i}^{i} - \sum_{j=1}^{n} a_{j}a_{i}^{j}, \\ & \text{F if we sum the dotter strengt } I \text{ commutes, there we get:} \\ & \sum_{i=1}^{n} a_{i}a_{i}^{i} - \sum_{i=1}^{n} \sum_{i=1}^{n} a_{i}a_{i}^{i}, \end{split}$$
 $\frac{\operatorname{Warr}^{1}(\operatorname{ser},\operatorname{spect})}{\sum_{i=1}^{n} \operatorname{ser}_{i}^{n} - \sum_{j=1}^{n} \operatorname{ser}_{i}^{n}}, \\ * \text{ for an arch dramater, here age is } \\ \sum_{i=1}^{n} \operatorname{ser}_{i}^{n} - \sum_{i=1}^{n} \operatorname{ser}_{i}^{n}, \\ \frac{1}{\sum_{i=1}^{n} \operatorname{ser}_{i}^{n} - \sum_{i=1}^{n} \operatorname{ser}_{i}^{n}}, \\ \frac{1}{\sum_{i=1}^{n} \operatorname{ser}_{i}^{n$
$$\begin{split} & \text{Notice:} & \text{Law-point} \\ & \text{For each constant:} & \text{Lim} & n/2 \\ & \text{For each constant:} & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} & \text{Lim} & n/2 \\ & \sum_{i=1}^{i} \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \text{For each constant:} \\ & \text{For each constant:} \\ & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \sum_{i=1}^{i} n/2^{i} = \sum_{i=1}^{i} n/i^{i}, \\ & \text{For each constant:} \\ & \text{F$$
Walras' Law - proof $\mathbf{F} = \sum_{i=1}^{L} \exp \sum_{i=1}^{\ell} \left(x_i^{i^*} - \omega_i^{i} \right) = 0.$
$$\begin{split} \sum_{\ell=1}^L & \operatorname{Re}\sum_{i=1}^\ell \left(\boldsymbol{x}_i^{t^*} - \boldsymbol{\omega}_i^{t} \right) = \boldsymbol{0}, \\ & \operatorname{Re}\sum_{i=1}^\ell \left(\boldsymbol{x}_i^{t^*} - \boldsymbol{\omega}_i^{t} \right) = \boldsymbol{0}, \end{split}$$
Walras' Law - proof $\sum_{\ell=1}^{L}p_\ell \sum_{i=1}^{\ell} \left(x_i^{(i)}-\omega_\ell^i\right)=0.$ $\rho_{\mathbf{k}}\sum_{i=1}^{l}\left(\boldsymbol{x}_{t}^{i*}-\boldsymbol{\omega}_{t}^{i}\right)=\mathbf{0}.$

	$\mathcal{Y} = \chi_{c}^{0.5} \mathcal{Y}_{c}^{0.5} + \lambda \left(\frac{\omega_{k} \mathcal{F}_{k} + \omega_{b}^{2} \mathcal{B}_{b} - \frac{t_{k} \chi_{c}}{2} - \frac{t_{b}}{2} \mathcal{Y}_{c}}{1 \right)$
Cobb-Douglas Each individual solves Task Varian 3.5.	$\frac{\partial 3}{\partial x_{\ell}} = 0.5 \chi_{\ell}^{-0.5} \chi_{\ell}^{-0.5} - \lambda R_{\star}^{-0.5} = 0$ $\frac{\partial 3}{\partial x_{\ell}} = 0.5 \chi_{\ell}^{-0.5} - \lambda R_{\star}^{-0.5} = 0$
$\begin{split} \rho_{i}x^{ij} &= \rho_{i}y^{ij} \leq \rho_{i}w^{i}_{c} + \rho_{j}w^{j}_{c} \end{split}$ We can set up a Lagrangian: $\mathcal{L} = \sqrt{x^{i}y^{i}} + \lambda(\rho_{i}w^{i}_{c} + \rho_{j}w^{j}_{c} - \rho_{c}x^{i} - \rho_{c}y^{i})$	
	$\frac{g_{13} \times 1^{o_1} y_{1}^{o_3}}{g_{13} \times 1^{o_1} g_{1}^{o_3}} = \frac{p_1}{T_3}$
Cold-Douglas Each individual solves $\max_{h, p_i} \sqrt{x' y'}$ is: $p_i x' + p_i y' \leq p_i w_i' + p_i w_j'$	$\frac{y_i}{x_i} = \frac{P_x}{P_x} = b \left(\frac{y_i}{y_i} = \frac{P_x}{P_x} \right)$
We can set up a Lagranguan: $\begin{split} \mathcal{L} &= \sqrt{x'y'} + \lambda \left(p_i w_i^i + p_j w_j^j - p_i x' - p_j y'\right) \\ \text{The FOC are:} \\ &= \frac{1}{2} \sqrt{\frac{y'}{y'}} = \lambda p_i \end{split}$	$u^{i} P_{i} = u^{i} P_{i} = x P_{i} + y P_{i}$
$\begin{array}{c} 2 & \lambda \\ 1 & \lambda \\ \frac{1}{2} \sqrt{\frac{2}{y^2}} = \lambda \mu_y \end{array}$	i Pr + Win Pr = Ki Pix + PixXi Pg
Cobb-Douglas Trax, $\frac{y'}{x'} = \frac{\rho_{0}}{\rho_{0}}$ $y' = x' \frac{\rho_{0}}{\rho_{0}}$	$w_{x} T_{x} + w_{y} P_{y} = K \cdot P_{x} + \frac{P_{x} \cdot P_{y}}{P_{y}}$ $w_{x} P_{x} + w_{y} P_{y} = Z \times P_{x}$
	$\frac{\omega_{x}(x+\omega_{y}(y)-chern)}{1+iP^{*}, \omega_{y}(y)}$
Colo Douglas	WERX + Wig Ry = Xi DD MARSHALLANAS
Thus, $\frac{y'}{x'} = \frac{p_{i}}{p_{j}}$ $y' = x \frac{p_{i}}{p_{j}}$ We haven't used the bodget metricitied	$\frac{w_{x}^{2}P_{x}^{2}+w_{y}^{2}P_{y}^{2}}{2P_{y}}=y_{i}^{2}$
	2 Py
Cobb-Dougdan Thus	ACR. ISP.
$\frac{k'_{-}}{p_{i}} = \frac{k_{i}}{p_{i}}$ $y' = x' \frac{k_{i}}{p_{i}}$ We haven't used the balance introduced $p_{i}x' = p_{i}y' = p_{i}x'_{i} + p_{i}x'_{i}$	$\frac{1.5P_{x}+0.5P_{y}}{2P_{x}} = X_{A}$
$\begin{array}{l} \rho_{i}x^{i}+\rho_{i}x^{i}\rho_{i}^{i}-\rho_{i}x^{i}_{i}+\rho_{j}w^{i}_{i}\\ x^{i}=\frac{w^{i}_{i}\rho_{i}}{2\rho_{i}}\\ y^{i}=\frac{w^{i}_{i}\rho_{i}}{2\rho_{i}}\\ y^{i}=\frac{w^{i}_{i}\rho_{i}}{2\rho_{i}}\end{array}$	
Cobb-Douglas $x^A = \frac{1.5 p_{\rm s} + 0.5 p_{\rm s}}{2 \rho_{\rm s}} \label{eq:alpha}$	$\frac{1.5P_{x}+0.5P_{y}}{2P_{y}}=Y_{x}^{*}$
$y^{A} = \frac{5p_{A}}{5p_{A}} + \frac{5p_{A}}{2p_{A}}$ $y^{B} = \frac{5p_{A} + 1.5p_{A}}{2p_{A}}$ $y^{B} = \frac{5p_{A} + 1.5p_{A}}{2p_{A}}$ Here we can use constition (2 (wave class))	Cry Cry
now will can use cost tick a (name cost)	
Cobb-Douglas $x^{\rm A} = \frac{1.5 p_{\rm s} + 0.5 p_{\rm y}}{2 p_{\rm s}}$ $y^{\rm A} = \frac{1.5 p_{\rm s} + 0.5 p_{\rm y}}{2 p_{\rm y}}$	1.3Px+0.5Py + 0.5Px+1.5Py = 2
$x^0 = \frac{0.5y_* + 1.5y_*}{2y_*}$ $y^0 = \frac{5y_* + 1.5y_*}{2y_*}$ Now we can use condition 2 (under close) $x^4 + x^6 = 2$	ZPX ZPX
$x + x^{-} = 4$ $y^{A} + y^{B} = 2$ Cobb-Douglas	X.
$\frac{1.5 \mu_{1} + 0.5 \mu_{2}}{2 \mu_{1}} + \frac{0.5 \mu_{1} + 1.5 \mu_{2}}{2 \mu_{2}} = 2$	XY
$\frac{p_i}{p_f} = 1$	
Coth-Douglas	ZPX + ZPY = Z ZPX
$\frac{1.5p_{1}+0.5p_{2}}{2p_{2}}+\frac{0.5p_{2}+1.5p_{2}}{2p_{2}}=2$ $\frac{2p_{2}}{2p_{2}}-1$	ZPX
$x^{k} = x^{\theta} = y^{s} = 1$	
	$recorrector}$ $1 \neq \frac{Py}{Px} = 2$
Warth and ward ward ward ward ward ward ward war	$\frac{P \times}{(11)}$
· · · · · · · · · · · · · · · · · · ·	Py-1 (2-7)
Lecture 3: General Equilibrium Competitive equilibrium	PX-E KIL
Examples: Color-Dougles Examples: Perfect Complements Examples: Perfect Substitutes	(1/2, 1/2)
Lecture 3: General Equilibrium	
	EN EL ER
Examples: Perfect Complements	
Perfect complements	$X_{A} = X_{B} = 1$
Suppose that $\begin{array}{c} a_{4}(x^{0},y^{0})=\min(x^{0},2y^{0}) & \qquad $	B (NR (1t -)
$\omega^* = \{1, 3\}$	Ja = 7:3 - 1
	A Ruete (onpratic (KJA) $P_{XXA} + P_{B} = W_{A} = W_{A} + W_{B}^{A}$
3	$y_a \leq w_x^{A} \frac{P_x + w_y^{A} P_y - P_x X_a}{P_y}$
0	$\frac{\forall a \frac{\theta}{2}}{\frac{F_{3}}{F_{3}}} = \frac{F_{3}}{F_{3}} \times 4$

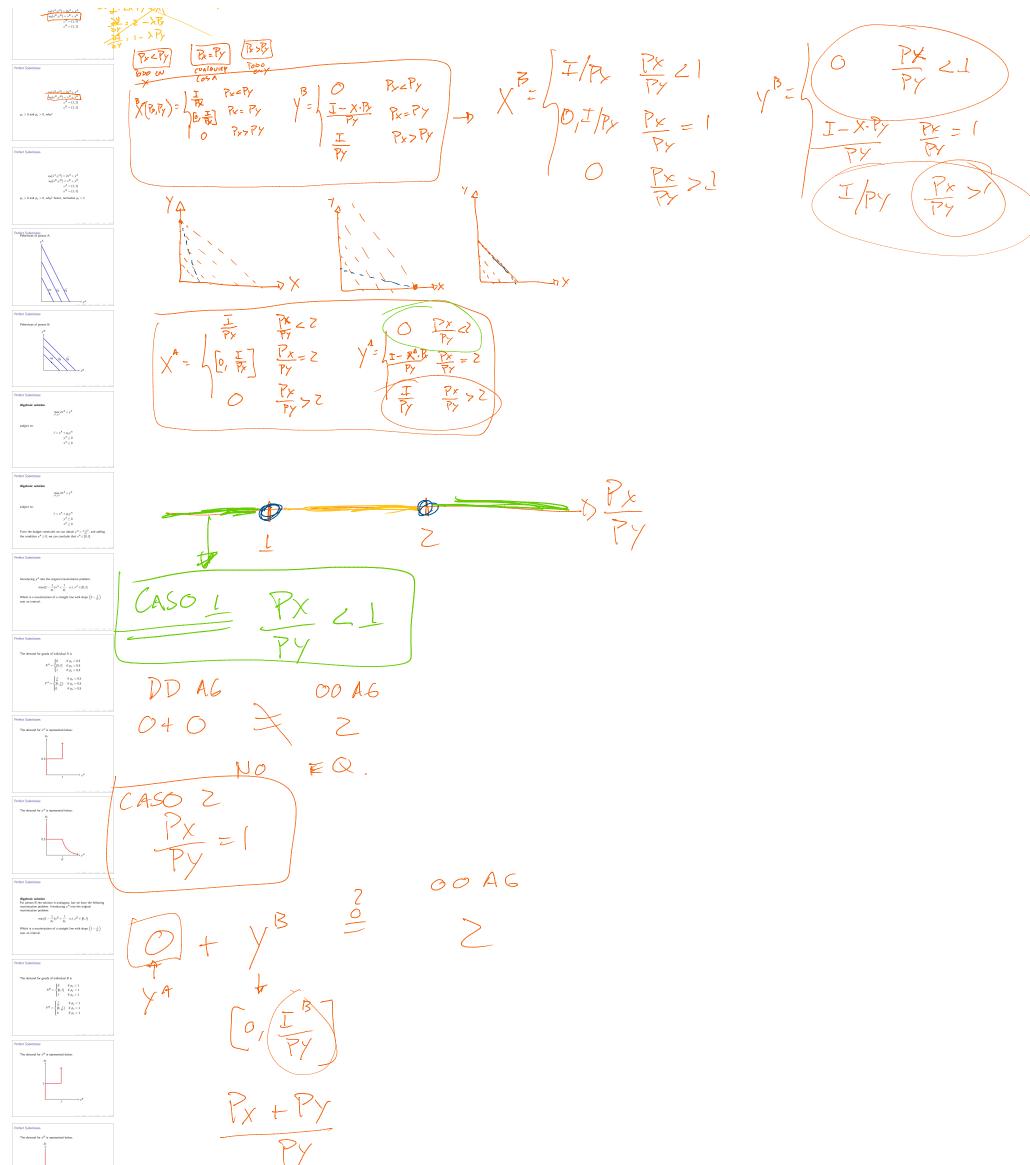
At a given price vector, consumer A can buy any combination $(x^A,y^A) \text{ such that:}$ $\rho_i w^A_e + \rho_i w^A_e \ge \rho_e x^A + \rho_i y^A$


Perfect complements


At a given prior vector, consumer A can by any combination $(x^{(k)}, y^{k})$ such that: $p_i w_{ij}^{k} + p_j w_{j}^{k} \ge p_i x^{k} + p_j y^{k}$ or equivalently $y^{k} \le \frac{p_i w_{ij}^{k} + p_j w_{j}^{k}}{p_j} - \frac{p_i}{p_j} x^{k}$

Perfect complements

As a given prior vector, conserver A can buy any combination (x^A, y^A) such that: $\rho_A w_a^A + \rho_A w_a^A = \rho_A w_a^A = \rho_A v^A$ or explainted: $y^A \leq \frac{\rho_A w_a^A + \rho_A w_a^A}{\rho_A} - \frac{\rho_A v^A}{\rho_A}$ How does this look in the Edgeworth bac?


If $\frac{a_1}{p_r}\neq 1$. Then, we will have the following restriction: $y^A\leq \frac{p_r}{p_r}\left(w_r^A-x^A\right)+w_r^A$

г. ~

1/2 DV

1		
Profest Subprises When is the market for good X balanced (how about good y7)	P× 11	
	PY TI	
Perfect Substitutes		
Porter Solutions in the matter for good X halanced (how about good $y^2)$). \blacktriangleright Try $\mu_s < 0.5$		
	EQUILIBIUD	
	$Z = \frac{P_x + P_y}{P_x} = 2$	
Proton: Substatutes When is the restrict for good X balanced (how about good y?) \blacktriangleright Tr $p_A < 0.5$ \blacktriangleright $X^A = 0$ and $X^B = 0$	PX, YAZO X = PY	
	$\int f g = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $	
$ \begin{array}{l} \mbox{Perfect Substitutes} \\ When the matched for good X halacced (how about good y?) \\ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
-+		
Perfect Substitutes When is the market for good X bulanced (how about good y?) Tr A_ < 0.5 V is not used as a	CASO RI, Pur, 2	

Caso 3 ICPX 22 $O + J^B$ $A = \frac{7}{7}$ 3 2 7.4 A X 3 $\begin{array}{l} {}^{\bullet} \mbox{ Try } p_{y} < 0.5 \\ {}^{\bullet} X^{A} = 0 \mbox{ and } X^{B} = 0 \\ {}^{\bullet} \mbox{ Try } p_{z} = 0.5 \\ {}^{\bullet} X^{A} = [0, 1] \mbox{ and } X^{B} = 0 \\ {}^{\bullet} \mbox{ Carb be an equilibrium } x^{A} + X^{B} < 2 \\ {}^{\bullet} \mbox{ Try } 0.5 < p_{z} < 1 \\ {}^{\bullet} \mbox{ Try } 0.5 < p_{z} < 1 \\ {}^{\bullet} \mbox{ X}^{A} = l \mbox{ and } X^{B} = 0 \end{array}$ PX+PY When is the market for good X Try $\rho_{s} < 0.5$ \times X⁴ = 0 and X^B = 0 \times Try $\rho_{s} = 0.5$ \times X⁴ = [s, 1] and X^B = 0 \cdot Cart be an equilibrium sin X⁴ + X⁴ = 2 \cdot Try 0.5 < $\rho_{s} < 1$ \times X⁴ = 1 and X^B = 0 \cdot Cart be an equilibrium sin $\frac{Px}{Py} + 1 = 2$ $\label{eq:constraints} \begin{array}{l} \mbox{bis} \ \$ >ZZZNOES FQ $P_{Y} = 1$ = I = 2 and $X^{H} = [0, 2]$ Then the markets to good X but states (now now, and the probability of the probability o $\frac{P_X}{P_Y} = Z$ CASO 4 y $\rho_{F}=1$ $^{4}=J=2$ and $X^{H}=[0,2]$ we conside equilibrium $(X^{A}=2,X^{H}=0,Y^{A}=0,Y^{H}=2)$ + IA 32 + PY $b_{\rm y}=1$ = l=2 and $X^{\rm H}=[0,2]$ =vesible equilibrium $(X^{\rm H}=2,X^{\rm H}=0,Y^{\rm H}=0,Y^{\rm H}=2)$ Y^{A} + $\frac{Px+Py}{Py} \stackrel{Z}{=} 2$ $\frac{\sqrt{1+\frac{1}{2}}}{\sqrt{1+\frac{1}{2}}}$ N N NO ES EQ Px >2 CASO 5 Px+Py = 22 Px+Py = 22 Py YA YB 2Px + 2 = 2 Py + 2 = 2 >2 NO ES EQ.