

What was the goal again?

- Prove the existence of a general equilibrium in a market
- ▶ We will show that the equilibrium is a "fix point" of a certain function
- Intuitively, if we have a function that adjusts prices (higher price if demand > supply), then the equilibrium is where this function stops updating

Excess demand

- T is continuous
- Thus we can apply the fix point theorem
- Therefore there exists a p^* such that $T(p^*) = p^*$

(ロ) (白) (き) (き) き のへの

• Then $Z(p^*) = 0$

Weird case - no equilibrium

$$u_A(x^A, y^A) = \min(x^A, y^A)$$
$$u_B(x^B, y^B) = \max(x^B, y^B)$$
$$\omega^A = (1, 1)$$
$$\omega^B = (1, 1)$$

- prices are positive (why?)
- lacktriangleright normalize $p_x = 1$
- ▶ if $p_y < 1$ then *B* wants to demand as much of *y* as possible $Y^b = \frac{1}{p_y} + 1$
- if $p_y > 1$ then B wants to demand as much of x as possible $X^b = p_y + 1$
- if p_y = 1 then B either demands two units of X or two units of Y, but A demands at least one unit of each good

 Lecture 4: General Equilibrium						
Is there always an equilibrium?						
Is the equilibrium unique?						
First welfare theorem						
Second welfare theorem						
- E + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +						

Proof

By contradiction: Assume that $(p, (x^1, x^2, ..., x^l))$ is a competitive equilibrium but that $(x^1, x^2, ..., x^l)$ is not Pareto efficient

0,00 £ (5)(5)(6)(0)

a7.6 c7d

OAC E ISIIELIELOAC

atc> btd

Proof

By definition of an equilibrium we have that

- Condition 3 in the previous slide implies $p \cdot \hat{x}^{i^*} > p \cdot w^{i^*}$
 - Otherwise, why didn't i^* pick \hat{x}^{i^*} to begin with
- Condition 2 in the previous slide implies that for all *i*, $p \cdot \hat{x}^i \ge p \cdot w^i$ $\vec{z} \quad P \cdot \chi^i > \vec{z} \quad P \cdot w^i$ $i \in I$

Proof

By definition of an equilibrium we have that

• Condition 3 in the previous slide implies $p \cdot \hat{x}^{i^*} > p \cdot w^{i^*}$

▶ Otherwise, why didn't i^* pick \hat{x}^{i^*} to begin with

► Condition 2 in the previous slide implies that for all *i*, $p \cdot \hat{x}^i \ge p \cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \cdot \widehat{x}^{i} > \sum_{i=1}^{l} p \cdot w^{i}$$

(ロ))(日)(三)(三)(三)(日)(日)

3 :0R0

イミト・ヨー

Proof

By definition of an equilibrium we have that

- ▶ Condition 3 in the previous slide implies p ⋅ x̂^{i*} > p ⋅ w^{i*}
 ▶ Otherwise, why didn't i* pick x̂^{i*} to begin with
- Condition 2 in the previous slide implies that for all i,
- Condition 2 in the previous slide implies that for all $p \cdot \hat{x}^i \ge p \cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \cdot \widehat{x}^{i} > \sum_{i=1}^{l} p \cdot w^{i}$$

Which in turn implies

$$p \cdot \sum_{i=1}^{l} \widehat{x}^i > p \cdot \sum_{i=1}^{l} w^i$$

Proof

By definition of an equilibrium we have that

- ▶ Condition 3 in the previous slide implies p · x̂^{i*} > p · w^{i*}
 ▶ Otherwise, why didn't i* pick x̂^{i*} to begin with
- Condition 2 in the previous slide implies that for all i,
- $p\cdot \widehat{x}^i \geqslant p\cdot w^i$

Adding over all agents we get:

$$\sum_{i=1}^{l} p \cdot \widehat{x}^{i} > \sum_{i=1}^{l} p \cdot w^{i}$$

Which in turn implies

$$p \cdot \sum_{i=1}^{l} \widehat{x}^i > p \cdot \sum_{i=1}^{l} w^i$$

Which contradicts what Condition 1 in the previous slide implies.

2

1 10 1 12 1 12 1 2 OR

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?

- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?

「「」、こと、「」

10+12+12+ 2 :0RC

ロン・ボン・モン・モン・モン

(UTIVA CONTIZAIO

- Not in general...
- Great! Since we motivated Pareto efficiency as the bare minimum, its nice to know that the market achieves it
- This may be useful in calculating competitive equilibrium... we only have to search within Pareto efficient allocations
- How about the opposite?
 - Maybe we "like" one Pareto allocation over another (for bio-ethic considerations)
 - Can any Pareto efficient allocation can be sustained as the outcome of some competitive equilibrium?
 - Not in general... but what if we allow for a redistribution of resources?

Lecture 4: General Equilibrium

Is there always an equilibrium?

Is the equilibrium unique?

First welfare theorem

Second welfare theorem

Lecture 4: General Equilibrium			· ·		
(1) a PERSON CONTROL NAME INTERNAL AND A LARGERY PRODUCTION AND AN AND AND AND AND AND AND AND AND AND AND					
Is there always an equilibrium?					
Is the equilibrium unique?					
First welfare theorem					
Second welfare theorem					
·ロト・街・・ミ・・ヨー ヨーの400					

Theorem

Given an economy $\mathcal{E} = \left\langle \mathcal{I}, \left(u^{i}, w^{i}\right)_{i \in \mathcal{I}} \right\rangle$ where all consumers have weakly monotone, quasi-concave utility functions. If $(x^1, x^2, ..., x^l)$ is a Pareto optimal allocation then there exists a redistribution of resources $(\widehat{w}^1, \widehat{w}^2, ..., \widehat{w}^I)$ and some prices $p = (p_1, p_2, ..., p_L)$ such that:

- 1. $\sum_{i=1}^{I} \widehat{w}^{i} = \sum_{i=1}^{I} w^{i}$ 2. $(p, (x^{1}, x^{2}, ..., x^{\prime})) \text{ is a competitive equilibrium of the economy } \mathcal{E} = \left\langle \mathcal{I}, (u^{i}, \widehat{w}^{i})_{i \in \mathcal{I}} \right\rangle$

Great, you don't need to close the markets to achieve a certain Pareto allocation

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- You just need to redistribute the endowments

1日下に聞きる またに注き 夏にの氏の

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- > You just need to redistribute the endowments
 - Ok... but what re-distribution should I do to achieve a certain outcome? No idea

Ok... but how can we do this redistribution?

- Great, you don't need to close the markets to achieve a certain Pareto allocation
- > You just need to redistribute the endowments
 - Ok... but what re-distribution should I do to achieve a certain outcome? No idea
 - Ok... but how can we do this redistribution? Not taxes, since they produce dead-weight loss
- In contrast to the first welfare theorem, we require an additional assumption that all utility functions are quasi-concave.
- ▶ What if they are not? consider the following:

$$u_A(x, y) = \max\{x, y\}$$
$$u_B(x, y) = \min\{x, y\}$$
$$\omega^A = (1, 1)$$
$$\omega^B = (1, 1)$$

In this example, all points in the Edgeworth Box are Pareto efficient. However we cannot obtain any of these points as a competitive equilibrium after transfers.

1011011011121121 3 ORC

920 E (E) (S) (B) (D)